Serum from obstructive sleep apnea patients induces inflammatory responses in coronary artery endothelial cells

Carregando...
Imagem de Miniatura
Citações na Scopus
48
Tipo de produção
article
Data de publicação
2016
Editora
ELSEVIER IRELAND LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
ZYCHOWSKI, Katherine E.
SANCHEZ, Bethany
POLOTSKY, Vsevolod Y.
CAMPEN, Matthew J.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
ATHEROSCLEROSIS, v.254, p.59-66, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and aims: Obstructive sleep apnea (OSA) is characterized by intermittent airway obstruction and systemic hypoxia during sleep, which can contribute to an increase in reactive oxygen species, vascular remodeling, vasoconstriction and ultimately cardiovascular disease. Continuous positive airway pressure (CPAP) is a clinical therapy that maintains airway patency and mitigates several symptoms of OSA. However, it is currently unknown whether CPAP therapy also reduces the overall inflammatory potential in the circulation; to address this in an unbiased manner, we applied a novel endothelial biosensor approach, the serum cumulative inflammatory potential (SCIP) assay. Methods: We studied healthy controls (n = 7), OSA subjects receiving no treatment, (OSA controls) (n = 7) and OSA subjects receiving CPAP for 3 months (n = 8). Serum was obtained from OSA subjects before and after CPAP or no treatment. A battery of quantitative and functional assays was performed to assess the serum inflammatory potential, in terms of endothelial responses. For the SCIP assay, human coronary artery endothelial cells (hCAECs) were incubated with 5% serum in media from individual subjects for 4 h. qPCR was performed to assess endothelial inflammatory transcript (ICAM-1, VCAM-1, IL-8, P-selectin, CCL5, and CXCL12) responses to serum. Additionally, transendothelial resistance was measured in serum-incubated hCAECs following leukocyte challenge. Results: hCAECs exhibited significant increases in VCAM-1, ICAM-1, IL-8 and P-selectin mRNA when incubated with serum from OSA patients compared to serum from healthy control subjects. Furthermore, compared to no treatment, serum from CPAP-treated individuals was less potent at inducing inflammatory gene expression in the SCIP assay. Similarly, in a leukocyte adhesion assay, naive cells treated with serum from patients who received CPAP exhibited improved endothelial barrier function than cells treated with OSA control serum. Conclusions: OSA results in greater serum inflammatory potential, thereby driving endothelial activation and dysfunction.
Palavras-chave
Obstructive sleep apnea, Inflammation, Hypoxia, Serum, Bioassay
Referências
  1. Agarwal B, 2013, INT J CARDIOL, V166, P246, DOI 10.1016/j.ijcard.2012.09.027
  2. Aragon MJ, 2016, CARDIOVASC TOXICOL, V16, P163, DOI 10.1007/s12012-015-9325-z
  3. Barbe F, 2012, JAMA-J AM MED ASSOC, V307, P2161, DOI 10.1001/jama.2012.4366
  4. Barbe F, 2010, AM J RESP CRIT CARE, V181, P718, DOI 10.1164/rccm.200901-0050OC
  5. Bouloukaki Izolde, 2015, World J Exp Med, V5, P77, DOI 10.5493/wjem.v5.i2.77
  6. Briancon-Marjollet A, 2014, SLEEP, V37, P1825, DOI 10.5665/sleep.4180
  7. Calvin AD, 2009, METAB SYNDR RELAT D, V7, P271, DOI 10.1089/met.2008.0093
  8. Carreras A, 2010, RESP RES, V11, DOI 10.1186/1465-9921-11-91
  9. Channell M.M., 2012, TOXICOL SCI
  10. Chirinos JA, 2014, NEW ENGL J MED, V370, P2265, DOI 10.1056/NEJMoa1306187
  11. Comondore VR, 2009, LUNG, V187, P17, DOI 10.1007/s00408-008-9115-5
  12. Craig SE, 2012, THORAX, V67, P1090, DOI 10.1136/thoraxjnl-2012-202178
  13. Cung H, 2015, J TRANSL MED, V13, DOI 10.1186/s12967-015-0457-5
  14. Drager LF, 2005, AM J RESP CRIT CARE, V172, P613, DOI 10.1164/rccm.200503-340OC
  15. Drager LF, 2013, J AM COLL CARDIOL, V62, P569, DOI 10.1016/j.jacc.2013.05.045
  16. Drager LF, 2011, CHEST, V140, P534, DOI 10.1378/chest.10-2223
  17. Drager LF, 2011, HYPERTENSION, V57, P549, DOI 10.1161/HYPERTENSIONAHA.110.165969
  18. Drager LF, 2010, AM J HYPERTENS, V23, P249, DOI 10.1038/ajh.2009.246
  19. Dyugovskaya L, 2002, AM J RESP CRIT CARE, V165, P934, DOI 10.1164/rccm.2104126
  20. El-Solh AA, 2002, CHEST, V121, P1541, DOI 10.1378/chest.121.5.1541
  21. ELICES MJ, 1990, CELL, V60, P577, DOI 10.1016/0092-8674(90)90661-W
  22. Feres MC, 2015, ATHEROSCLEROSIS, V241, P342, DOI 10.1016/j.atherosclerosis.2015.05.008
  23. Heinzer R, 2015, LANCET RESP MED, V3, P310, DOI 10.1016/S2213-2600(15)00043-0
  24. Jelic S, 2008, CIRCULATION, V117, P2270, DOI 10.1161/CIRCULATIONAHA.107.741512
  25. Jurado-Gamez B, 2012, J SLEEP RES, V21, P139, DOI 10.1111/j.1365-2869.2011.00955.x
  26. Karimi M, 2015, SLEEP, V38, P341, DOI 10.5665/sleep.4486
  27. Kheirandish-Gozal L., 2015, AM J RESP CRIT CARE, V191, pA2596
  28. Kim J, 2009, J SLEEP RES, V18, P313, DOI 10.1111/j.1365-2869.2008.00725.x
  29. Lamberts M, 2014, J INTERN MED, V276, P659, DOI 10.1111/joim.12302
  30. Lavie L, 2003, SLEEP MED REV, V7, P35, DOI 10.1053/smrv.2002.0261
  31. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  32. Marin JM, 2005, LANCET, V365, P1046, DOI 10.1016/S0140-6736(05)71141-7
  33. McNicholas WT, 2009, PROG CARDIOVASC DIS, V51, P392, DOI 10.1016/j.pcad.2008.10.005
  34. Metz TO, 2008, J PROTEOME RES, V7, P698, DOI 10.1021/pr700606w
  35. Middleton J, 2002, BLOOD, V100, P3853, DOI 10.1182/blood.V100.12.3853
  36. Molnar MZ, 2015, THORAX, V70, P888, DOI 10.1136/thoraxjnl-2015-206970
  37. Munoz A, 2000, EUR RESPIR J, V15, P676, DOI 10.1034/j.1399-3003.2000.15d09.x
  38. Nadeem R, 2013, J CLIN SLEEP MED, V9, P1003, DOI 10.5664/jcsm.3070
  39. Ohga E, 1999, J APPL PHYSIOL, V87, P10
  40. Ohga E, 2003, J APPL PHYSIOL, V94, P179, DOI 10.1152/japplphysiol.00177.2002
  41. Paffett ML, 2015, TOXICOL SCI, V146, P244, DOI 10.1093/toxsci/kfv093
  42. Peppard P., 2000, NEW ENGL J MED, V342
  43. Peppard PE, 2013, AM J EPIDEMIOL, V177, P1006, DOI 10.1093/aje/kws342
  44. Polotsky VY, 2010, PHYSIOL GENOMICS, V41, P306, DOI 10.1152/physiolgenomics.00091.2009
  45. Ryan S, 2005, CIRCULATION, V112, P2660, DOI 10.1161/CIRCULATIONAHA.105.556746
  46. Ryan S, 2009, THORAX, V64, P631, DOI 10.1136/thx.2008.105577
  47. Sanchez-de-la-Torre M, 2013, LANCET RESP MED, V1, P61, DOI 10.1016/S2213-2600(12)70051-6
  48. Schmidt FM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121971
  49. Sever PS, 2013, J AM COLL CARDIOL, V62, P717, DOI 10.1016/j.jacc.2013.02.098
  50. Smoliga JM, 2013, AGING-US, V5, P495
  51. Stradling JR, 2015, THORAX, V70, P181, DOI 10.1136/thoraxjnl-2014-205958
  52. Ursavas A, 2007, RESPIRATION, V74, P525, DOI 10.1159/000097770
  53. Weaver TE, 2007, SLEEP, V30, P711
  54. Wilson PWF, 2005, ARCH INTERN MED, V165, P2473, DOI 10.1001/archinte.165.21.2473
  55. Xu HJ, 2014, ATHEROSCLEROSIS, V234, P446, DOI 10.1016/j.atherosclerosis.2014.03.034
  56. Xu J.-X., 2015, SLEEP BREATH, P1
  57. Xu Y, 2010, EURASIP J WIREL COMM, DOI 10.1155/2010/818964
  58. Yaggi HK, 2005, NEW ENGL J MED, V353, P19