Chlorhexidine bathing for the prevention of colonization and infection with multidrug-resistant microorganisms in a hematopoietic stem cell transplantation unit over a 9-year period Impact on chlorhexidine susceptibility

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2016
Editora
LIPPINCOTT WILLIAMS & WILKINS
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
MEDICINE, v.95, n.46, article ID e5271, 8p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Health care associated infections (HAIs) are currently among the major challenges to the care of hematopoietic stem cell transplantation (HSCT) patients. The objective of the present study was to evaluate the impact of 2% chlorhexidine (CHG) bathing on the incidence of colonization and infection with vancomycin-resistant Enterococcus (VRE), multidrug-resistant (MDR) gram-negative pathogens, and to evaluate their CHG minimum inhibitory concentration (MIC) after the intervention. A quasi-experimental study with duration of 9 years was conducted. VRE colonization and infection, HAI rates, and MDR gramnegative infection were evaluated by interrupted time series analysis. The antibacterial susceptibility profile and mechanism of resistance to CHG were analyzed in both periods by the agar dilution method in the presence or absence of the efflux pump inhibitor carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) and presence of efflux pumps (qacA/E, qacA, qacE, cepA, AdeA, AdeB, and AdeC) by polymerase chain reaction (PCR). The VRE colonization and infection rates were significantly reduced in the postintervention period (P=0.001). However, gramnegative MDR rates in the unit increased in the last years of the study. The CHG MICs for VRE increased during the period of exposure to the antiseptic. A higher MIC at baseline period was observed in MDR gram-negative strains. The emergence of a monoclonal Pseudomonas aeruginosa clone was observed in the second period. Concluding, CHG bathing was efficient regarding VRE colonization and infection, whereas no similar results were found with MDR gram-negative bacteria.
Palavras-chave
chlorhexidine bath, hospital infection, hematopoietic stem cell transplantation infection, multidrug-resistant bacteria, transplant infection
Referências
  1. Abuzaid A, 2012, J HOSP INFECT, V81, P87, DOI 10.1016/j.jhin.2012.03.003
  2. Bass P, 2013, AM J INFECT CONTROL, V41, P345, DOI 10.1016/j.ajic.2012.04.324
  3. Bischoff M, 2012, MICROB DRUG RESIST, V18, P7, DOI 10.1089/mdr.2011.0092
  4. Calderwood MS, 2008, INFECT CONT HOSP EP, V29, P1019, DOI 10.1086/591454
  5. Chaves L, 2014, 24 ECCMID
  6. Climo MW, 2013, NEW ENGL J MED, V368, P533, DOI 10.1056/NEJMoa1113849
  7. Climo MW, 2009, CRIT CARE MED, V37, P1858, DOI 10.1097/CCM.0b013e31819ffe6d
  8. CLSI-Clinical and Laboratory Standards Institute, 2016, M100S CLSI S
  9. Fang CT, 2002, ANTIMICROB AGENTS CH, V46, P2024, DOI 10.1128/AAC.46.6.2024-2028.2002
  10. Fraud S, 2008, ANTIMICROB AGENTS CH, V52, P4478, DOI 10.1128/AAC.01072-08
  11. Giske CG, 2006, J CLIN MICROBIOL, V44, P4309, DOI 10.1128/JCM.00817-06
  12. Horan TC, 2008, AM J INFECT CONTROL, V36, P309, DOI 10.1016/j.ajic.2008.03.002
  13. Kamboj M, 2010, BIOL BLOOD MARROW TR, V16, P1576, DOI 10.1016/j.bbmt.2010.05.008
  14. Kawamura-Sato K, 2010, J ANTIMICROB CHEMOTH, V65, P1975, DOI 10.1093/jac/dkq227
  15. Lawes T, 2015, BMJ OPEN, V5, DOI 10.1136/bmjopen-2014-006596
  16. Lowings M, 2015, BMC INFECT DIS, V15, DOI 10.1186/s12879-015-1246-8
  17. Magiorakos AP, 2012, CLIN MICROBIOL INFEC, V18, P268, DOI 10.1111/j.1469-0691.2011.03570.x
  18. McNeil JC, 2013, PEDIATR INFECT DIS J, V2, P337
  19. Mendes ET, 2012, INT J INFECT DIS, V16, pE424, DOI 10.1016/j.ijid.2012.01.015
  20. Mendes RE, 2007, J CLIN MICROBIOL, V45, P544, DOI 10.1128/JCM.01728-06
  21. Meyer B, 2010, J HOSP INFECT, V76, P200, DOI 10.1016/j.jhin.2010.05.020
  22. Milstone AM, 2008, CLIN INFECT DIS, V46, P274, DOI 10.1086/524736
  23. Milstone AM, 2013, LANCET, V381, P1099, DOI 10.1016/S0140-6736(12)61687-0
  24. Mostachio AK, 2012, INT J ANTIMICROB AG, V39, P396, DOI 10.1016/j.ijantimicag.2012.01.021
  25. Noto MJ, 2015, JAMA-J AM MED ASSOC, V313, P369, DOI 10.1001/jama.2014.18400
  26. O'Horo JC, 2012, INFECT CONT HOSP EP, V33, P257, DOI 10.1086/664496
  27. Oliveira AL, 2007, BONE MARROW TRANSPL, V39, P775, DOI 10.1038/sj.bmt.1705677
  28. Oliver A, 2015, DRUG RESIST UPDATE, V21-22, P41, DOI 10.1016/j.drup.2015.08.002
  29. Petrich A, 2001, DIAGN MICR INFEC DIS, V41, P215, DOI 10.1016/S0732-8893(01)00305-4
  30. Ramos J, 2015, 25 ECCMID
  31. Ranzani OT, 2014, CRIT CARE, V18, DOI 10.1186/s13054-014-0580-3
  32. Ritz J, 2012, J NURS CARE QUAL, V27, P171, DOI 10.1097/NCQ.0b013e3182398568
  33. Smith K, 2008, J ANTIMICROB CHEMOTH, V61, P78, DOI 10.1093/jac/dkm395
  34. Tomblyn M, 2009, BIOL BLOOD MARROW TR, V15, P1143, DOI 10.1016/j.bbmt.2009.06.019
  35. Vernon MO, 2006, ARCH INTERN MED, V166, P306, DOI 10.1001/archinte.166.3.306
  36. Wang JT, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121668
  37. Werner G, 2015, J MICROBIOL METH, V118, P81, DOI 10.1016/j.mimet.2015.08.019