Diagnostic accuracy of static CT perfusion for the detection of myocardial ischemia. A systematic review and meta-analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
43
Tipo de produção
article
Data de publicação
2016
Editora
ELSEVIER SCIENCE INC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
SORGAARD, Mathias Holm
KOFOED, Klaus Fuglsang
LINDE, Jesper James
GEORGE, Richard Thomas
FEUCHTNER, Gudrun
LIMA, Joao A. C.
ABDULLA, Jawdat
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
Journal of Cardiovascular Computed Tomography, v.10, n.6, p.450-457, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: The aim of this study is to provide a meta-analysis of all published studies assessing the diagnostic accuracy of stress CT myocardial perfusion imaging (CTP) in patients suspected of or with known coronary artery disease. This analysis is limited to static stress CTP. Methods: Systematic literature review and meta-analysis of studies examining the diagnostic accuracy of static CTP imaging alone or combined with coronary CT angiography (CTA) in comparison to single photon emission computed tomography (SPECT), magnetic resonance perfusion (MRP), and/or invasive coronary angiography with and without fractional flow reserve (FFR). Results: The search revealed 19 eligible studies including 1188 patients. Pooled results showed that CTP had a good agreement with SPECT and MRP. On a per-patient level, sensitivity, specificity and AUC were 0.85 (95% CI: 0.70-0.93), 0.81 (95% CI: 0.59-0.93), 0.90 (95% CI: 0.87-0.92). On a per-artery level, sensitivity, specificity and AUC were 0.80 (95% CI: 0.67-0.88), 0.81 (95% CI: 0.72-0.88) and 0.87 (95% CI: 0.84-0.90). When invasive coronary angiography was used as reference standard, combined coronary CTA and CTP compared to coronary CTA alone significantly improved the specificity from 0.62 (95% CI: 0.52-0.70) to 0.84 (95% CI: 0.74-0.91) on a per-patient level (p = 0.008) and from 0.72 (95% CI: 0.63-0.79) to 0.90 (95% CI: 0.85-0.93) on a per-artery level (p = 0.0001) without significant decrease in sensitivity (p = 0.59 and p = 0.23, respectively). Conclusion: In selected patients, static CT myocardial perfusion has high diagnostic accuracy to detecting myocardial ischemia. Specificity increases significantly when CT myocardial perfusion is combined with coronary CFA.
Palavras-chave
Coronary computed tomography angiography, Invasive coronary angiography, Stress myocardial perfusion, Coronary artery disease, Fractional flow reserve, Meta-analysis, Computed tomography perfusion, Single photon emission computed tomography, Magnetic resonance perfusion
Referências
  1. Abdulla J, 2007, EUR HEART J, V28, P3042, DOI 10.1093/eurheartj/ehm466
  2. Al-Mallah MH, 2015, J CARDIOVASC COMPUT, V9, P514, DOI 10.1016/j.jcct.2015.09.003
  3. Bettencourt N, 2013, J AM COLL CARDIOL, V61, P1099, DOI 10.1016/j.jacc.2012.12.020
  4. Blankstein R, 2009, J AM COLL CARDIOL, V54, P1072, DOI 10.1016/j.jacc.2009.06.014
  5. Cury RC, 2010, AM J CARDIOL, V106, P310, DOI 10.1016/j.amjcard.2010.03.025
  6. De Cecco CN, 2014, AM J ROENTGENOL, V203, pW70, DOI 10.2214/AJR.13.11772
  7. Feuchtner G, 2011, CIRC-CARDIOVASC IMAG, V4, P540, DOI 10.1161/CIRCIMAGING.110.961250
  8. George RT, 2012, CIRC-CARDIOVASC IMAG, V5, P333, DOI 10.1161/CIRCIMAGING.111.969303
  9. George RT, 2009, CIRC-CARDIOVASC IMAG, V2, P174, DOI 10.1161/CIRCIMAGING.108.813766
  10. Kido T, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-75
  11. Kim SM, 2014, J COMPUT ASSIST TOMO, V38, P44, DOI 10.1097/RCT.0b013e3182a77626
  12. Ko BS, 2012, JACC-CARDIOVASC IMAG, V5, P1097, DOI 10.1016/j.jcmg.2012.09.004
  13. Ko SM, 2014, INT J CARDIOVAS IMAG, V30, P41, DOI 10.1007/s10554-014-0410-3
  14. Ko SM, 2011, EUR RADIOL, V21, P26, DOI 10.1007/s00330-010-1897-1
  15. Kristensen TS, 2010, INT J CARDIOL, V144, P200, DOI 10.1016/j.ijcard.2009.04.024
  16. Liberati A, 2009, ANN INTERN MED, V151, pW65
  17. Linde JJ, 2014, INT J CARDIOL, V174, P195, DOI 10.1016/j.ijcard.2014.03.209
  18. MOSES LE, 1993, STAT MED, V12, P1293, DOI 10.1002/sim.4780121403
  19. Nasis A, 2013, EUR RADIOL, V23, P1812, DOI 10.1007/s00330-013-2788-z
  20. Pelgrim GJ, 2015, EUR J RADIOL, V84, P2411, DOI 10.1016/j.ejrad.2014.12.032
  21. Qayyum AA, 2013, INT J CARDIOVAS IMAG, V29, P1585, DOI 10.1007/s10554-013-0234-6
  22. Rief M, 2013, J AM COLL CARDIOL, V62, P1476, DOI 10.1016/j.jacc.2013.03.088
  23. Rocha JA, 2010, RADIOLOGY, V254, P410, DOI 10.1148/radiol.09091014
  24. Rochitte CE, 2014, EUR HEART J, V35, P1120, DOI 10.1093/eurheartj/eht488
  25. Stehli J, 2014, J AM COLL CARDIOL, V64, P772, DOI 10.1016/j.jacc.2014.04.079
  26. Takx RA, 2015, CIRC CARDIOVASC IMAG, V8
  27. Tonino PAL, 2009, NEW ENGL J MED, V360, P213, DOI 10.1056/NEJMoa0807611
  28. Whiting PF, 2011, ANN INTERN MED, V155, P529, DOI [10.7326/0003-4819-155-8-201110180-00009, 10.1059/0003-4819-155-8-201110180-00009]
  29. Wong DTL, 2014, J AM COLL CARDIOL, V63, P1904, DOI 10.1016/j.jacc.2014.02.557