Distinct Subcortical Volume Alterations in Pediatric and Adult OCD: A Worldwide Meta- and Mega-Analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
240
Tipo de produção
article
Data de publicação
2017
Editora
AMER PSYCHIATRIC PUBLISHING, INC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
BOEDHOE, Premika S. W.
SCHMAAL, Lianne
ABE, Yoshinari
AMEIS, Stephanie H.
ARNOLD, Paul D.
BENEDETTI, Francesco
BEUCKE, Jan C.
BOLLETTINI, Irene
BOSE, Anushree
Autor de Grupo de pesquisa
ENIGMA OCD Working Grp
Editores
Coordenadores
Organizadores
Citação
AMERICAN JOURNAL OF PSYCHIATRY, v.174, n.1, p.60-69, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: Structural brain imaging studies in obsessive compulsive disorder (OCD) have produced inconsistent findings. This may be partially due to limited statistical power from relatively small samples and clinical heterogeneity related to variation in illness profile and developmental stage. To address these limitations, the authors conducted meta and mega-analyses of data from OCD sites worldwide. Method: T-1 images from 1,830 OCD patients and 1,759 control subjects were analyzed, using coordinated and standardized processing, to identify subcortical brain volumes that differ between OCD patients and healthy subjects. The authors performed a meta analysis on the mean of the left and right hemisphere measures of each subcortical structure, and they performed a mega-analysis by pooling these volumetric measurements from each site. The authors additionally examined potential modulating effects of clinical characteristics on morphological differences in OCD patients. Results: The meta-analysis indicated that adult patients had significantly smaller hippocampal volumes (Cohen's d=-0.13; % difference=-2.80) and larger pallidum volumes (d=0.16; % difference=3.16) compared with adult controls. Both effects were stronger in medicated patients compared with controls (d=-0.29, % difference=-4.18, and d=0.29, % difference=4.38, respectively). Unmedicated pediatric patients had significantly larger thalamic volumes (d=0.38, % difference=3.08) compared with pediatric controls. None of these findings were mediated by sample characteristics, such as mean age or scanning field strength. The mega-analysis yielded similar results. Conclusions: The results indicate different patterns of sub cortical abnormalities in pediatric and adult OCD patients. The patlidum and hippocampus seem to be of importance in adult OCD, whereas the thalamus seems to be key in pediatric OCD. These findings highlight the potential importance of neurodevelopmental alterations in OCD and suggest that further research on neuroplasticity in OCD may be useful.
Palavras-chave
Referências
  1. Atmaca M, 2007, PROG NEURO-PSYCHOPH, V31, P46, DOI 10.1016/j.pnpbp.2006.06.008
  2. Atmaca M, 2006, PROG NEURO-PSYCHOPH, V30, P1051, DOI 10.1016/j.pnpbp.2006.03.033
  3. Cardoner N, 2007, NEUROIMAGE, V38, P413, DOI 10.1016/j.neuroimage.2007.07.039
  4. de Wit SJ, 2014, AM J PSYCHIAT, V171, P340, DOI 10.1176/appi.ajp.2013.13040574
  5. Erdfelder E, 1996, BEHAV RES METH INSTR, V28, P1, DOI 10.3758/BF03203630
  6. Fischl B, 2002, NEURON, V33, P341, DOI 10.1016/S0896-6273(02)00569-X
  7. Gilbert AR, 2008, NEUROSCI LETT, V435, P45, DOI 10.1016/j.neulet.2008.02.011
  8. Gilbert AR, 2000, ARCH GEN PSYCHIAT, V57, P449, DOI 10.1001/archpsyc.57.5.449
  9. GOODMAN WK, 1989, ARCH GEN PSYCHIAT, V46, P1006
  10. Grimm O, 2015, J NEUROSCI METH, V253, P254, DOI 10.1016/j.jneumeth.2015.05.024
  11. Gronenschild EHBM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038234
  12. Hibar D, 2014, MOL PSYCHIATR, V3, P66
  13. Ivanov I, 2010, AM J PSYCHIAT, V167, P397, DOI 10.1176/appi.ajp.2009.09030398
  14. Kassem MS, 2013, MOL NEUROBIOL, V47, P645, DOI 10.1007/s12035-012-8365-7
  15. Menzies L, 2008, NEUROSCI BIOBEHAV R, V32, P525, DOI 10.1016/j.neubiorev.2007.09.005
  16. Milad MR, 2012, TRENDS COGN SCI, V16, P43, DOI 10.1016/j.tics.2011.11.003
  17. Miller AM, 2010, ARCH GEN PSYCHIAT, V67, P955, DOI 10.1001/archgenpsychiatry.2010.102
  18. Morey RA, 2009, NEUROIMAGE, V45, P855, DOI 10.1016/j.neuroimage.2008.12.033
  19. Nestadt G, 2000, ARCH GEN PSYCHIAT, V57, P358, DOI 10.1001/archpsyc.57.4.358
  20. Peng Ziwen, 2012, Asian J Psychiatr, V5, P290, DOI 10.1016/j.ajp.2012.07.004
  21. Pujol J, 2004, ARCH GEN PSYCHIAT, V61, P720, DOI 10.1001/archpsyc.61.7.720
  22. Radua J, 2010, ARCH GEN PSYCHIAT, V67, P701, DOI 10.1001/archgenpsychiatry.2010.70
  23. Radua J, 2009, BRIT J PSYCHIAT, V195, P393, DOI 10.1192/bjp.bp.108.055046
  24. Rosenberg DR, 2000, BIOL PSYCHIAT, V48, P294, DOI 10.1016/S0006-3223(00)00902-1
  25. Rotge JY, 2010, NEUROPSYCHOPHARMACOL, V35, P686, DOI 10.1038/npp.2009.175
  26. Rotge JY, 2009, BIOL PSYCHIAT, V65, P75, DOI 10.1016/j.biopsych.2008.06.019
  27. Ruscio AM, 2010, MOL PSYCHIATR, V15, P53, DOI 10.1038/mp.2008.94
  28. Scahill L, 1997, J AM ACAD CHILD PSY, V36, P844, DOI 10.1097/00004583-199706000-00023
  29. Schmaal L, 2016, MOL PSYCHIATR, V21, P806, DOI 10.1038/mp.2015.69
  30. Schoemaker D, 2016, NEUROIMAGE, V129, P1, DOI 10.1016/j.neuroimage.2016.01.038
  31. Selles RR, 2014, CHILD PSYCHIAT HUM D, V45, P666, DOI 10.1007/s10578-014-0435-9
  32. Stewart SE, 2004, ACTA PSYCHIAT SCAND, V110, P4, DOI 10.1111/j.1600-0447.2004.00302.x
  33. Szeszko PR, 2008, AM J PSYCHIAT, V165, P1299, DOI 10.1176/appi.ajp.2008.08010033
  34. Thompson PM, 2015, NEUROIMAGE
  35. van den Heuvel OA, 2016, EUR NEUROPSYCHOPHARM, V26, P810, DOI 10.1016/j.euroneuro.2015.12.005
  36. van Erp TGM, 2016, MOL PSYCHIATR, V21, P547, DOI 10.1038/mp.2015.63
  37. Wittchen HU, 2005, EUR NEUROPSYCHOPHARM, V15, P357, DOI 10.1016/j.euroneuro.2005.04.012
  38. Zarei M, 2011, BIOL PSYCHIAT, V70, P1083, DOI 10.1016/j.biopsych.2011.06.032