High performance mass spectrometry based proteomics reveals enzyme and signaling pathway regulation in neutrophils during the early stage of surgical trauma

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2017
Editora
WILEY-V C H VERLAG GMBH
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
TAHIR, Muhammad
CASTRO, Mariana S.
SIDOLI, Simone
ROEPSTORFF, Peter
FONTES, Wagner
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PROTEOMICS CLINICAL APPLICATIONS, v.11, n.1-2, article ID UNSP 1600001, 16p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: In clinical conditions trauma is associated with high mortality and morbidity. Neutrophils play a key role in the development of multiple organ failure after trauma Experimental design: To have a detailed understanding of the neutrophil activation at primary stages after trauma, neutrophils are isolated from control and surgical trauma rats in this study. Extracted proteins are analyzed using nano liquid chromatography coupled with tandem mass spectrometry. Results: A total of 2924 rat neutrophil proteins are identified in our analysis, of which 393 are found differentially regulated between control and trauma groups. By using functional pathways analysis of the 190 proteins up-regulated in surgical trauma, we found proteins related to transcription initiation and protein biosynthesis. On the other hand, among the 203 proteins down-regulated in surgical trauma we found enrichment for proteins of the immune response, proteasome degradation and actin cytoskeleton. Overall, enzyme prediction analysis revealed that regulated enzymes are directly involved in neutrophil apoptosis, directional migration and chemotaxis. Our observations are then confirmed by in silico protein-protein interaction analysis. Conclusions and clinical relevance: Collectively, our results reveal that neutrophils drastically regulate their biochemical pathways after the early stages of surgical trauma, showing lower activity. This implies higher susceptibility of the trauma patients to infection and bystander tissues damage.
Palavras-chave
Inflammation, Neutrophil, Proteome, Surgery, Trauma
Referências
  1. Adams JM, 2001, J TRAUMA, V51, P452, DOI 10.1097/00005373-200109000-00005
  2. Almond JB, 2002, LEUKEMIA, V16, P433, DOI 10.1038/sj/leu/2402417
  3. Anderson SI, 2003, CELL MOTIL CYTOSKEL, V54, P135, DOI 10.1002/cm.10091
  4. Aquino EN, 2016, PROTEIN PEPTIDE LETT, V23, P142, DOI 10.2174/0929866523666151202210604
  5. Azevedo EP, 2015, J BIOL CHEM, V290, P22174, DOI 10.1074/jbc.M115.640094
  6. BELLISOLA G, 1987, CLIN BIOCHEM, V20, P415, DOI 10.1016/0009-9120(87)90007-5
  7. Botelho RJ, 2000, J CELL BIOL, V151, P1353, DOI 10.1083/jcb.151.7.1353
  8. BOTHA AJ, 1995, SURGERY, V118, P358, DOI 10.1016/S0039-6060(05)80345-9
  9. Boussetta T, 2010, BLOOD, V116, P5795, DOI 10.1182/blood-2010-03-273094
  10. Brosch M, 2009, J PROTEOME RES, V8, P3176, DOI 10.1021/pr800982s
  11. Brown GE, 1999, J TRAUMA, V46, P297, DOI 10.1097/00005373-199902000-00017
  12. Butler KL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011921
  13. Buttenschoen K, 2010, CURR OPIN INFECT DIS, V23, P259, DOI 10.1097/QCO.0b013e32833939cb
  14. Carvalho LO, 2015, J CELL BIOCHEM, V116, P1831, DOI 10.1002/jcb.25124
  15. Chiang N, 2006, PHARMACOL REV, V58, P463, DOI 10.1124/pr.58.3.4
  16. Chitnis D, 1996, J LEUKOCYTE BIOL, V59, P835
  17. Chouker A, 2005, ARCH SURG-CHICAGO, V140, P129, DOI 10.1001/archsurg.140.2.129
  18. Cicchetti G, 2002, CRIT REV ORAL BIOL M, V13, P220
  19. Dienz O, 2012, MUCOSAL IMMUNOL, V5, P258, DOI 10.1038/mi.2012.2
  20. Ding JB, 1996, J BIOL CHEM, V271, P24869
  21. Edwards SW, 1997, IMMUNOL TODAY, V18, P320, DOI 10.1016/S0167-5699(97)01087-6
  22. FABIAN TC, 1994, ANN SURG, V220, P552, DOI 10.1097/00000658-199410000-00013
  23. FONTES B, 1988, DIS COLON RECTUM, V31, P298, DOI 10.1007/BF02554364
  24. Fontes W, 1998, ANAL BIOCHEM, V258, P259, DOI 10.1006/abio.1998.2565
  25. Gobom J, 1999, J MASS SPECTROM, V34, P105, DOI 10.1002/(SICI)1096-9888(199902)34:2<105::AID-JMS768>3.3.CO;2-W
  26. GRANGER DN, 1995, ANNU REV PHYSIOL, V57, P311
  27. Gurcel L, 2006, CELL, V126, P1135, DOI 10.1016/j.cell.2006.07.033
  28. HAZUDA DJ, 1990, J BIOL CHEM, V265, P6318
  29. Hierholzer C, 1999, TRANSPLANTATION, V68, P1244, DOI 10.1097/00007890-199911150-00006
  30. Hietbrink F, 2009, INJURY, V40, P851, DOI 10.1016/j.injury.2008.11.002
  31. Hsing CH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129693
  32. Huang RY, 1998, MOL CELL BIOL, V18, P7130
  33. HUGHES V, 1987, BIOSCIENCE REP, V7, P881, DOI 10.1007/BF01119479
  34. HUMPHREYS JM, 1989, BIOCHEM PHARMACOL, V38, P1241, DOI 10.1016/0006-2952(89)90329-8
  35. Johnson JL, 2001, J TRAUMA, V50, P449, DOI 10.1097/00005373-200103000-00008
  36. Junger WG, 2013, SHOCK, V40, P366, DOI 10.1097/SHK.0000000000000038
  37. Khanapure SP, 2007, CURR TOP MED CHEM, V7, P311, DOI 10.2174/156802607779941314
  38. Khwaja A, 1999, BLOOD, V94, P291
  39. KUBES P, 1995, J CLIN INVEST, V95, P2510, DOI 10.1172/JCI117952
  40. Kuhn H, 2006, PROG LIPID RES, V45, P334, DOI 10.1016/j.plipres.2006.02.003
  41. Kumar R, 2002, J CELL PHYSIOL, V193, P133, DOI 10.1002/jcp.10167
  42. Kurihara T, 2013, FASEB J, V27, P2270, DOI 10.1096/fj.12-219519
  43. Laursen I, 2008, CLIN CHIM ACTA, V395, P159, DOI 10.1016/j.cca.2008.06.006
  44. Lawrence T, 2009, CSH PERSPECT BIOL, V1, DOI 10.1101/cshperspect.a001651
  45. Le'Negrate G, 2003, CELL DEATH DIFFER, V10, P153, DOI 10.1038/sj.cdd.4401110
  46. Liberio MS, 2011, AMINO ACIDS, V40, P51, DOI 10.1007/s00726-009-0384-y
  47. Ludwig A, 2000, J IMMUNOL, V165, P1044
  48. Luo HBR, 2015, EMBO REP, V16, P149, DOI 10.15252/embr.201439466
  49. Molloy EJ, 2005, PEDIATR RES, V57, P806, DOI 10.1203/01.PDR.0000156500.13600.B5
  50. Nascimento A, 2007, TOXICON, V50, P1095, DOI 10.1016/j.toxicon.2007.07.014
  51. Palmisano G, 2010, NAT PROTOC, V5, P1974, DOI 10.1038/nprot.2010.167
  52. Paunel-Gorgulu A, 2012, MOL MED, V18, P325, DOI 10.2119/molmed.2011.00380
  53. Pillay J, 2012, J CLIN INVEST, V122, P327, DOI 10.1172/JCI57990
  54. Plytycz B, 2002, FOLIA BIOL-KRAKOW, V50, P181
  55. Power CP, 2004, J IMMUNOL, V173, P5229
  56. Rollins BJ, 1997, BLOOD, V90, P909
  57. Rossaint J, 2012, CRIT CARE, V16, DOI 10.1186/cc11518
  58. Russo-Carbolante E.M.S., 2002, COMP CLIN PATHOL, V11, P71, DOI 10.1007/S005800200001
  59. SAMUELSSON B, 1987, SCIENCE, V237, P1171, DOI 10.1126/science.2820055
  60. SAVILL JS, 1989, J CLIN INVEST, V83, P865, DOI 10.1172/JCI113970
  61. Savitha D, 2008, Indian J Physiol Pharmacol, V52, P302
  62. Shao W, 2007, J BIOL CHEM, V282, P36321, DOI 10.1074/jbc.M708182200
  63. Shureiqi I, 2001, CANCER RES, V61, P4879
  64. SILLIMAN CC, 1994, J LAB CLIN MED, V124, P684
  65. Szklarczyk D, 2015, NUCLEIC ACIDS RES, V43, pD447, DOI 10.1093/nar/gku1003
  66. Tahir M, 2015, CLINICS, V70, P61, DOI 10.6061/clinics/2015(01)11
  67. Tang DG, 1996, P NATL ACAD SCI USA, V93, P5241, DOI 10.1073/pnas.93.11.5241
  68. Teles LMB, 2012, PROTEIN PEPTIDE LETT, V19, P663
  69. Tian XF, 2006, LIFE SCI, V79, P2069, DOI 10.1016/j.lfs.2006.06.027
  70. Vaughan JE, 2006, AM J OBSTET GYNECOL, V195, P1415, DOI 10.1016/j.ajog.2006.02.053
  71. Villa P, 2002, J INFECT DIS, V185, P1115, DOI 10.1086/340042
  72. Wang J, 2013, NUCLEIC ACIDS RES, V41, pW77, DOI 10.1093/nar/gkt439
  73. Wisniewski JR, 2009, NAT METHODS, V6, P359, DOI [10.1038/nmeth.1322, 10.1038/NMETH.1322]
  74. Zhou JY, 2013, PROTEOM CLIN APPL, V7, P571, DOI 10.1002/prca.201200109
  75. Zhu J, 2014, PROTEOMICS, V14, P1688, DOI 10.1002/pmic.201400009