beta-arrestin is critical for early shear stress-induced Akt/eNOS activation in human vascular endothelial cells

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2017
Editora
ACADEMIC PRESS INC ELSEVIER SCIENCE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, v.483, n.1, p.75-81, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Recent evidence suggests that beta-arrestins, which are involved in G protein-coupled receptors desensitization, may influence mechanotransduction. Here, we observed that nitric oxide (NO) production was abrogated in human saphenous vein endothelial cells (SVECs) transfected with siRNA against beta-arrestin 1 and 2 subjected to shear stress (SS, 15 dynes/cm2, 10 min). The downregulation of beta-arrestins 1/2 in SVECs cells also prevented the SS-induced rise in levels of phosphorylation of Akt and endothelial nitric oxide synthase (eNOS, Serine 1177). Interestingly, immunoprecipitation revealed that beta-arrestin interacts with Akt, eNOS and caveolin-1 and these interactions are not influenced by SS. Our data indicate that barrestins and Akt/eNOS downstream signaling are required for early SS-induced NO production in SVECs, which is consistent with the idea that beta-arrestins and caveolin-1 are part of a pre-assembled complex associated with the cellular mechanotransduction machinery.
Palavras-chave
beta-arrestin, Mechanotransduction, Shear stress, Nitric oxide, Endothelial cells
Referências
  1. Ahn S, 2003, P NATL ACAD SCI USA, V100, P1740, DOI 10.1073/pnas.262789099
  2. Ahn S, 2009, J BIOL CHEM, V284, P8846, DOI 10.1074/jbc.M808463200
  3. Azuma N, 2000, J VASC SURG, V32, P789, DOI 10.1067/mva.2000.107989
  4. Bao XP, 2001, AM J PHYSIOL-HEART C, V281, pH22
  5. Barauna VG, 2013, BIOCHEM BIOPH RES CO, V441, P713, DOI 10.1016/j.bbrc.2013.10.108
  6. Barauna VG, 2013, BIOCHEM BIOPH RES CO, V434, P647, DOI 10.1016/j.bbrc.2013.04.005
  7. Beaulieu JM, 2005, CELL, V122, P261, DOI 10.1016/j.cell.2005.05.012
  8. Bernier SG, 2000, J BIOL CHEM, V275, P30707, DOI 10.1074/jbc.M005116200
  9. Chatterjee S, 2014, ANTIOXID REDOX SIGN, V20, P899, DOI 10.1089/ars.2013.5624
  10. DeWire SM, 2007, ANNU REV PHYSIOL, V69, P483, DOI 10.1146/annurev.physiol.69.022405.154749
  11. Dimmeler S, 1998, CIRC RES, V83, P334
  12. Fleming I, 2005, J CELL SCI, V118, P4103, DOI 10.1242/jcs.02541
  13. Florian JA, 2003, CIRC RES, V93, pE136, DOI 10.1161/01.RES.0000101744.47866.D5
  14. Fontana J, 2002, CIRC RES, V90, P866, DOI 10.1161/01.RES.0000016837.26733.BE
  15. Campos LCG, 2009, CARDIOVASC RES, V83, P140, DOI 10.1093/cvr/cvp108
  16. Gavard J, 2006, NAT CELL BIOL, V8, P1223, DOI 10.1038/ncb1486
  17. Jin ZG, 2003, CIRC RES, V93, P354, DOI 10.1161/01.RES.0000089257.94002.96
  18. KUCHAN MJ, 1994, AM J PHYSIOL, V267, pC753
  19. Li YSJ, 2005, J BIOMECH, V38, P1949, DOI 10.1016/j.jbiomech.2004.09.030
  20. Lin FT, 2002, BIOCHEMISTRY-US, V41, P10692, DOI 10.1021/bi025705n
  21. Loufrani L, 2008, AM J PHYSIOL-HEART C, V294, pH1906, DOI 10.1152/ajpheart.00966.2006
  22. Lymperopoulos A, 2012, CURR PHARM DESIGN, V18, P192
  23. Michell BJ, 2001, J BIOL CHEM, V276, P17625, DOI 10.1074/jbc.C100122200
  24. O'Brien WT, 2011, J CLIN INVEST, V121, P3756, DOI 10.1172/JCI45194
  25. Ozawa K, 2008, MOL CELL, V31, P395, DOI 10.1016/j.molcel.2008.05.024
  26. Radel C, 2007, BIOCHEM BIOPH RES CO, V358, P626, DOI 10.1016/j.bbrc.2007.04.179
  27. Rakesh K, 2010, SCI SIGNAL, V3, DOI 10.1126/scisignal.2000769
  28. Ramkhelawon B, 2013, FASEB J, V27, P3008, DOI 10.1096/fj.12-222299
  29. SESSA WC, 1994, CIRC RES, V74, P349
  30. Shenoy SK, 2001, SCIENCE, V294, P1307, DOI 10.1126/science.1063866
  31. Shenoy SK, 2007, J BIOL CHEM, V282, P29549, DOI 10.1074/jbc.M700852200
  32. Shukla AK, 2011, TRENDS BIOCHEM SCI, V36, P457, DOI 10.1016/j.tibs.2011.06.003
  33. Soh UJK, 2011, P NATL ACAD SCI USA, V108, pE1372, DOI 10.1073/pnas.1112482108
  34. Taguchi K, 2014, J PHARMACOL EXP THER, V349, P199, DOI 10.1124/jpet.113.211854
  35. Tzima E, 2005, NATURE, V437, P426, DOI 10.1038/nature03952
  36. Violin JD, 2007, TRENDS PHARMACOL SCI, V28, P416, DOI 10.1016/j.tips.2007.06.006
  37. Violin JD, 2010, J PHARMACOL EXP THER, V335, P572, DOI 10.1124/jpet.110.173005
  38. Wang SJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092926
  39. Xiao K, 2007, P NATL ACAD SCI USA, V104, P12011, DOI 10.1073/pnas.0704849104
  40. Xiao N, 2015, J BIOL CHEM, V290, P1927, DOI 10.1074/jbc.M114.608703
  41. Yamamoto K, 2000, CIRC RES, V87, P385
  42. Yu J, 2006, J CLIN INVEST, V116, P1284, DOI 10.1172/JCI27100