CCL2/CCR2-Dependent Recruitment of Functional AntigenPresenting Cells into Tumors upon Chemotherapy

Carregando...
Imagem de Miniatura
Citações na Scopus
109
Tipo de produção
article
Data de publicação
2014
Editora
AMER ASSOC CANCER RESEARCH
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
MA, Yuting
MATTAROLLO, Stephen R.
ADJEMIAN, Sandy
YANG, Heng
AYMERIC, Laetitia
HANNANI, Dalil
DURET, Helene
TENG, Michele W. L.
KEPP, Oliver
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
CANCER RESEARCH, v.74, n.2, p.436-445, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The therapeutic efficacy of anthracyclines relies, at least partially, on the induction of a dendritic cell-and T-lymphocyte-dependent anticancer immune response. Here, we show that anthracycline-based chemotherapy promotes the recruitment of functional CD11b(+)CD11c(+)Ly6C(high)Ly6G(-)MHCII(+) dendritic cell-like antigenpresenting cells (APC) into the tumor bed, but not into lymphoid organs. Accordingly, draining lymph nodes turned out to be dispensable for the proliferation of tumor antigen-specific T cells within neoplastic lesions as induced by anthracyclines. In addition, we found that tumors treated with anthracyclines manifest increased expression levels of the chemokine Ccl2. Such a response is important as neoplasms growing in Ccl2(-/-) mice failed to accumulate dendritic cell-like APCs in response to chemotherapy. Moreover, cancers developing in mice lacking Ccl2 or its receptor (Ccr2) exhibited suboptimal therapeutic responses to anthracycline-based chemotherapy. Altogether, our results underscore the importance of the CCL2/CCR2 signaling axis for therapeutic anticancer immune responses as elicited by immunogenic chemotherapy. (C) 2013 AACR.
Palavras-chave
Referências
  1. Allen SJ, 2007, ANNU REV IMMUNOL, V25, P787, DOI 10.1146/annurev.immunol.24.021605.090529
  2. Casares N, 2005, J EXP MED, V202, P1691, DOI 10.1084/jem.20050915
  3. De Palma M, 2013, CANCER CELL, V23, P277, DOI 10.1016/j.ccr.2013.02.013
  4. Dogan RNE, 2008, J IMMUNOL, V180, P7376
  5. Elliott MR, 2009, NATURE, V461, P282, DOI 10.1038/nature08296
  6. Fang WB, 2012, J BIOL CHEM, V287, P36593, DOI 10.1074/jbc.M112.365999
  7. Geissmann F, 2003, IMMUNITY, V19, P71, DOI 10.1016/S1074-7613(03)00174-2
  8. Gentleman RC, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-10-r80
  9. Izhak L, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0028305
  10. Knight DA, 2013, J CLIN INVEST, V123, P1371, DOI 10.1172/JCI66236
  11. Kroemer G, 2013, ANNU REV IMMUNOL, V31, P51, DOI 10.1146/annurev-immunol-032712-100008
  12. Krysko DV, 2012, NAT REV CANCER, V12, P860, DOI 10.1038/nrc3380
  13. Ladoire S, 2011, J PATHOL, V224, P389, DOI 10.1002/path.2866
  14. Lesokhin AM, 2012, CANCER RES, V72, P876, DOI 10.1158/0008-5472.CAN-11-1792
  15. Ma Y, 2013, IMMUNITY, V38, P729, DOI 10.1016/j.immuni.2013.03.003
  16. Ma YT, 2011, J EXP MED, V208, P491, DOI 10.1084/jem.20100269
  17. Mattarollo SR, 2011, CANCER RES, V71, P4809, DOI 10.1158/0008-5472.CAN-11-0753
  18. Michaud M, 2011, SCIENCE, V334, P1573, DOI 10.1126/science.1208347
  19. Mitchem JB, 2013, CANCER RES, V73, P1128, DOI 10.1158/0008-5472.CAN-12-2731
  20. Nakasone ES, 2012, CANCER CELL, V21, P488, DOI 10.1016/j.ccr.2012.02.017
  21. Osterholzer JJ, 2009, J IMMUNOL, V183, P8044, DOI 10.4049/jimmunol.0902823
  22. Peters W, 2004, J IMMUNOL, V172, P7647
  23. Qian BZ, 2011, NATURE, V475, P222, DOI 10.1038/nature10138
  24. Robays LJ, 2007, J IMMUNOL, V178, P5305
  25. Sato N, 2000, J EXP MED, V192, P205, DOI 10.1084/jem.192.2.205
  26. Senovilla L, 2012, SCIENCE, V337, P1678, DOI 10.1126/science.1224922
  27. Tacke F, 2007, J CLIN INVEST, V117, P185, DOI 10.1172/JCI28549
  28. Vacchelli E, 2013, ONCOIMMUNOLOGY, V2, DOI 10.4161/onci.23510
  29. Vacchelli E, 2012, ONCOIMMUNOLOGY, V1, P179, DOI 10.4161/onci.1.2.19026
  30. Zitvogel L, 2012, NAT IMMUNOL, V13, P343, DOI 10.1038/ni.2224