The dual role of cathelicidins in systemic inflammation

Carregando...
Imagem de Miniatura
Citações na Scopus
26
Tipo de produção
article
Data de publicação
2017
Editora
ELSEVIER SCIENCE BV
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
IMMUNOLOGY LETTERS, v.182, p.57-60, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Antimicrobial peptides are key components of the innate immune system. They act as broad-spectrum antimicrobial agents against Gram-positive and negative bacteria, viruses, and fungi. More recently, antimicrobial peptides have been ascribed immunomodulatory functions, including roles in wound healing, induction of cytokines, and altering host gene expression. Cathelicidins are a class of antimicrobial peptide found in humans, mice, and rats, among others. Known as LL-37 in humans and cathelin-related antimicrobial peptide (CRAMP) in rodents, cathelicidins are produced by many different cells, including macrophages, neutrophils, and epithelial cells. The role of cathelicidins is somewhat confounding, as they exhibit both pro-and anti-inflammatory activity. A major obstacle in the study of cathelicidins is the inability of exogenous LL-37 or CRAMP to mimic the activity of their endogenous counterparts. Nevertheless, studies have shown that LL-37 is recognized by multiple receptors, and may stabilize or modulate Toll-like receptor signaling. In addition, cathelicidins play a role in apoptosis, inflammasome activation, and phagocytosis. However, many studies are revealing the dual effects of cathelicidins. For example, CRAMP appears to be protective in models of group A Streptococcus skin infection, pneumonia, and meningitis, but detrimental in cases of severe bacterial infection, such as septic shock. It is becoming increasingly clear that the activity of cathelicidins is modulated by complex interactions with the microenvironment, as well as the disease background. This article reviews what is currently known about the activity of cathelicidins in an attempt to understand their complex roles in systemic diseases. (C)2017 European Federation of Immunological Societies.
Palavras-chave
LL-37, CRAMP, Sepsis, Inflammation
Referências
  1. Aarbiou J, 2006, INFLAMM RES, V55, P119, DOI 10.1007/s00011-005-0062-9
  2. Afsal K, 2014, TUBERCULOSIS, V94, P599, DOI 10.1016/j.tube.2014.09.007
  3. Barbeiro DF, 2013, MICROBES INFECT, V15, P342, DOI 10.1016/j.micinf.2013.01.001
  4. Bergman P, 2007, CURR HIV RES, V5, P410
  5. Bergman P, 2006, INFECT IMMUN, V74, P6982, DOI 10.1128/IAI.01043-06
  6. Cakir E, 2014, INT J TUBERC LUNG D, V18, P671, DOI 10.5588/ijtld.13.0831
  7. Coffelt SB, 2009, MOL CANCER RES, V7, P907, DOI 10.1158/1541-7786.MCR-08-0326
  8. Cole JN, 2016, MICROBIOL SPECTR, V4, DOI 10.1128/microbiolspec.VMBF-0006-2015
  9. da Silva FP, 2013, TISSUE CELL, V45, P318, DOI 10.1016/j.tice.2013.04.003
  10. da Silva FP, 2012, PEPTIDES, V36, P308, DOI 10.1016/j.peptides.2012.05.014
  11. da Silva FP, 2009, IMMUNOL CELL BIOL, V87, P496, DOI 10.1038/icb.2009.19
  12. De Yang, 2000, J Exp Med, V192, P1069, DOI 10.1084/jem.192.7.1069
  13. Dombrowski Y, 2012, EXP DERMATOL, V21, P327, DOI 10.1111/j.1600-0625.2012.01459.x
  14. Gonzalez-Curiel I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111355
  15. Honda JR, 2014, J MED MICROBIOL, V63, P997, DOI 10.1099/jmm.0.070888-0
  16. Jiang YY, 2012, RESP MED, V106, P1680, DOI 10.1016/j.rmed.2012.08.018
  17. Kahlenberg JM, 2013, J IMMUNOL, V191, P4895, DOI 10.4049/jimmunol.1302005
  18. Kienhofer D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115474
  19. Kovach MA, 2012, J IMMUNOL, V189, P304, DOI 10.4049/jimmunol.1103196
  20. Lande R, 2011, SCI TRANSL MED, V3, DOI 10.1126/scitranslmed.3001180
  21. Merres J, 2014, J INNATE IMMUN, V6, P205, DOI 10.1159/000353645
  22. Nakagawa Y, 2015, J IMMUNOL, V194, P1274, DOI 10.4049/jimmunol.1402388
  23. Nizet V, 2001, NATURE, V414, P454, DOI 10.1038/35106587
  24. Piktel E, 2016, ARCH IMMUNOL THER EX, V64, P33, DOI 10.1007/s00005-015-0359-5
  25. Ren SX, 2012, CANCER RES, V72, P6512, DOI 10.1158/0008-5472.CAN-12-2359
  26. Salvado MD, 2013, ARTERIOSCL THROM VAS, V33, P1965, DOI 10.1161/ATVBAHA.113.301851
  27. Salzer S, 2014, J DERMATOL SCI, V76, P173, DOI 10.1016/j.jdermsci.2014.09.002
  28. Tai EKK, 2013, GENE THER, V20, P187, DOI 10.1038/gt.2012.22
  29. Tang X, 2015, J IMMUNOL, V195, P1191, DOI 10.4049/jimmunol.1402845
  30. Wan M, 2014, J LEUKOCYTE BIOL, V95, P971, DOI 10.1189/jlb.0513304
  31. Wassing GM, 2015, INT J ANTIMICROB AG, V45, P447, DOI 10.1016/j.ijantimicag.2014.11.003
  32. Wertenbruch S, 2015, DIGESTION, V91, P307, DOI 10.1159/000368304
  33. Wu HH, 2015, PROG HISTOCHEM CYTO, V50, P11, DOI 10.1016/j.proghi.2015.06.001
  34. Xhindoli D, 2014, BIOCHEM J, V457, P263, DOI 10.1042/BJ20131048
  35. Yin J, 2010, INVEST OPHTH VIS SCI, V51, P1891, DOI 10.1167/iovs.09-3904
  36. Zhang XA, 2010, BBA-BIOMEMBRANES, V1798, P2201, DOI 10.1016/j.bbamem.2009.12.011