Age-related reference curves of volumetric bone density, structure, and biomechanical parameters adjusted for weight and height in a population of healthy women: an HR-pQCT study

Carregando...
Imagem de Miniatura
Citações na Scopus
36
Tipo de produção
article
Data de publicação
2017
Editora
SPRINGER LONDON LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
OSTEOPOROSIS INTERNATIONAL, v.28, n.4, p.1335-1346, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In a cross-sectional cohort of 450 healthy women aged 20 to 85 years, data on the density, structure, and strength of the distal radius and tibia were obtained using high-resolution peripheral quantitative computed tomography (HR-pQCT) and were adjusted for age, weight, and height. Age-dependent patterns of change differed between the sites and between the trabecular and cortical compartments. In postmenopausal women, the trabecular bone remained relatively stable at the distal tibia, but the cortical compartment changed significantly. Cortical porosity exhibited a very weak correlation with stiffness. The aim of this study is to provide information on age-related, weight-related, and height-related changes in the volumetric bone mineral density (vBMD), structure, and biomechanical parameters of the cortical and trabecular compartments in a healthy female population using HR-pQCT. For a cross-sectional Brazilian cohort of 450 women aged 20 to 85 years, age-related reference curves of the vBMD, structure, and biomechanical parameters of the distal radius (DR) and distal tibia (DT) were constructed and adjusted for weight and height, and comparisons between premenopausal and postmenopausal women were performed. Reference curves were obtained for all parameters. At the DR, age-related changes varied from -8.68% (cortical thickness [Ct.Th]) to 26.7% (trabecular separation [Tb.Sp]). At the DT, the changes varied from -12.4% (Ct.Th) to 26.3% (Tb.Sp). Cortical porosity (Ct.Po) exhibited the largest percent changes: 342.2% at the DR and 381.5% at the DT. In premenopausal women, Ct.Th remained constant; in postmenopausal women, structural trabecular parameters (trabecular number (Tb.N), trabecular thickness (Tb.Th), Tb.Sp) did not change, whereas cortical parameters and stiffness were significantly altered. Cortical vBMD showed the greatest absolute decrease at both sites, and the slopes were highly negative after menopause. Pearson correlations between stiffness (S) and HR-pCT parameters revealed a significant correlation between the densities and structures of the trabecular and cortical compartments. A weak correlation was observed between S and Ct.Po (DR r = -0.162, DT r = -0.273; p < 0.05). These data provide reference curves from healthy women and demonstrate that density and structural and biomechanical parameters differ between the radius and tibia and between the trabecular and cortical compartments. In postmenopausal women, the trabecular bone remained relatively stable at the tibia site, whereas the cortical compartment changed significantly.
Palavras-chave
Bone, Distal radius, HR-pQCT, Strength, Tibia
Referências
  1. Amin S, 2012, J OSTEOPOROS, V2012, DOI 10.1155/2012/129760
  2. Bala Y, 2015, J BONE MINER RES, V30, P621, DOI 10.1002/jbmr.2388
  3. Bhalla AK, 2010, BEST PRACT RES CL RH, V24, P313, DOI 10.1016/j.berh.2010.01.006
  4. Boutroy S, 2005, J CLIN ENDOCR METAB, V90, P6508, DOI 10.1210/jc.2005-1258
  5. Boutroy S, 2016, J BONE MINER RES
  6. Boutroy S, 2008, J BONE MINER RES, V23, P392, DOI 10.1359/JBMR.071108
  7. Burghardt AJ, 2010, J BONE MINER RES, V25, P983, DOI 10.1359/jbmr.091104
  8. Burt L.A., 2016, J BONE MINER RES
  9. Burt LA, 2014, ARCH OSTEOPOROS, V9, DOI 10.1007/s11657-014-0183-2
  10. Dalzell N, 2009, OSTEOPOROSIS INT, V20, P1683, DOI 10.1007/s00198-008-0833-6
  11. Delaisse Jean-Marie, 2014, Bonekey Rep, V3, P561, DOI 10.1038/bonekey.2014.56
  12. Engelke K, 2012, OSTEOPOROSIS INT, V23, P2151, DOI 10.1007/s00198-011-1829-1
  13. Evio S, 2004, J CLIN ENDOCR METAB, V89, P626, DOI 10.1210/jc.2003-030198
  14. Feng X, 2011, ANNU REV PATHOL-MECH, V6, P121, DOI 10.1146/annurev-pathol-011110-130203
  15. Fuchs SC, 2002, BMC PUBLIC HEALTH, V2, DOI 10.1186/1471-2458-2-1
  16. Fuller H, 2015, REV BRAS REUMATOL, V55, P352, DOI [10.1016/j.rbr.2014.07.010, 10.1016/j.rbre.2014.07.010]
  17. Geusens P, 2014, NAT REV RHEUMATOL, V10, P304, DOI 10.1038/nrrheum.2014.23
  18. Hansen S, 2014, CALCIFIED TISSUE INT, V94, P269, DOI 10.1007/s00223-013-9808-5
  19. Horber FF, 1997, NUTRITION, V13, P524, DOI 10.1016/S0899-9007(97)00031-2
  20. Hung VWY, 2015, OSTEOPOROSIS INT, V26, P1691, DOI 10.1007/s00198-015-3045-x
  21. Hunter GR, 2014, CURR OPIN ENDOCRINOL, V21, P358, DOI 10.1097/MED.0000000000000087
  22. Kaji H, 2006, ENDOCR J, V53, P27, DOI 10.1507/endocrj.53.27
  23. Kanis JA, 2002, LANCET, V359, P1929, DOI 10.1016/S0140-6736(02)08761-5
  24. Khosla S, 2006, J BONE MINER RES, V21, P124, DOI 10.1359/JBMR.050916
  25. Liu XS, 2010, J BONE MINER RES, V25, P746, DOI 10.1359/jbmr.090822
  26. Lopes JB, 2012, CLINICS, V67, P1401, DOI 10.6061/clinics/2012(12)09
  27. Macdonald HM, 2011, J BONE MINER RES, V26, P50, DOI 10.1002/jbmr.171
  28. MacNeil JA, 2008, BONE, V42, P1203, DOI 10.1016/j.bone.2008.01.017
  29. Manske SL, 2009, OSTEOPOROSIS INT, V20, P445, DOI 10.1007/s00198-008-0675-2
  30. Nicks KM, 2013, BONE, V55, P179, DOI 10.1016/j.bone.2013.02.009
  31. Nicks KM, 2012, J BONE MINER RES, V27, P637, DOI 10.1002/jbmr.1468
  32. Nishiyama KK, 2010, J BONE MINER RES, V25, P882, DOI 10.1359/jbmr.091020
  33. Paggiosi MA, 2014, CALCIFIED TISSUE INT, V94, P191, DOI 10.1007/s00223-013-9798-3
  34. Patsch JM, 2011, ANN NY ACAD SCI, V1240, P77, DOI 10.1111/j.1749-6632.2011.06282.x
  35. Paupitz JA, 2016, OSTEOPOROSIS INT, V27, P1839, DOI 10.1007/s00198-015-3461-y
  36. Sasimontonkul S, 2007, J BIOMECH, V40, P3503, DOI 10.1016/j.jbiomech.2007.05.024
  37. Silva MJ, 1997, BONE, V21, P191, DOI 10.1016/S8756-3282(97)00100-2
  38. Stein EM, 2014, J BONE MINER RES, V29, P1101, DOI 10.1002/jbmr.2144
  39. Stone KL, 2003, J BONE MINER RES, V18, P1947, DOI 10.1359/jbmr.2003.18.11.1947
  40. VANRIETBERGEN B, 1995, J BIOMECH, V28, P69
  41. Vilayphiou N, 2016, BONE, V83, P233, DOI 10.1016/j.bone.2015.10.012
  42. Walker-Bone K, 2014, OCCUP ENVIRON MED, V71, P329, DOI 10.1136/oemed-2013-101967
  43. Wehner T, 2009, CLIN BIOMECH, V24, P299, DOI 10.1016/j.clinbiomech.2008.12.007