Relative analytical sensitivity of donor nucleic acid amplification technology screening and diagnostic real-time polymerase chain reaction assays for detection of Zika virus RNA

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2017
Editora
WILEY
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
STONE, Mars
LANTERI, Marion C.
BAKKOUR, Sonia
DENG, Xutao
GALEL, Susan A.
LINNEN, Jeffrey M.
MUNOZ-JORDAN, Jorge L.
LANCIOTTI, Robert S.
RIOS, Maria
GALLIAN, Pierre
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
TRANSFUSION, v.57, n.3, Special Issue, p.734-747, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND Zika virus (ZIKV) has spread rapidly in the Pacific and throughout the Americas and is associated with severe congenital and adult neurologic outcomes. Nucleic acid amplification technology (NAT) assays were developed for diagnostic applications and for blood donor screening on high-throughput NAT systems. We distributed blinded panels to compare the analytical performance of blood screening relative to diagnostic NAT assays. STUDY DESIGN AND METHODS A 25-member, coded panel (11 half-log dilutions of a 2013 French Polynesia ZIKV isolate and 2015 Brazilian donor plasma implicated in transfusion transmission, and 3 negative controls) was sent to 11 laboratories that performed 17 assays with 2 to 12 replicates per panel member. Results were analyzed for the percentage reactivity at each dilution and by probit analysis to estimate the 50% and 95% limits of detection (LOD50 and LOD95, respectively). RESULTS Donor-screening NAT assays that process approximately 500 mu L of plasma into amplification reactions were comparable in sensitivity (LOD50 and LOD95, 2.5 and 15-18 copies/mL) and were approximately 10-fold to 100-fold more sensitive than research laboratory-developed and diagnostic reverse transcriptase-polymerase chain reaction tests that process from 10 to 30 mu L of plasma per amplification. Increasing sample input volume assayed with the Centers for Disease Control and Prevention reverse transcriptase-polymerase chain reaction assays increased the LODs by 10-fold to 30-fold. CONCLUSIONS Blood donor-screening ZIKV NAT assays demonstrate similar excellent sensitivities to assays currently used for screening for transfusion-transmitted viruses and are substantially more sensitive than most other laboratory-developed and diagnostic ZIKV reverse transcriptase-polymerase chain reaction assays. Enhancing sensitivities of laboratory-developed and diagnostic assays may be achievable by increasing sample input.
Palavras-chave
Referências
  1. Atkinson B, 2016, EMERG INFECT DIS, V22, P940, DOI 10.3201/eid2205.160107
  2. Aubry M, 2016, TRANSFUSION, V56, P33, DOI 10.1111/trf.13271
  3. Barjas-Castro ML, 2016, TRANSFUSION, V56, P1684, DOI 10.1111/trf.13681
  4. Baronti C., 2014, GENOME ANNOUNC, V2, P2, DOI 10.1128/GENOMEA.00500-14
  5. Besnard M, 2014, EURO SURVEILL, V19
  6. Bingham AM, 2016, MMWR-MORBID MORTAL W, V65, P475, DOI 10.15585/mmwr.mm6518e2
  7. Bonaldo MC, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004816
  8. Brasil P, 2016, NEW ENGL J MED, V375, P2321, DOI 10.1056/NEJMoa1602412
  9. Brasil P, 2016, LANCET INFECT DIS, V16, P1307, DOI 10.1016/S1473-3099(16)30372-3
  10. Campos RD, 2016, J CLIN VIROL, V77, P69, DOI 10.1016/j.jcv.2016.02.009
  11. Centers for Disease Control and Prevention, 2016, AR WITH ZIK
  12. Centers for Disease Control and Prevention (CDC), 2016, PREGN OUTC US DISTR
  13. Centers for Disease Control and Prevention, 2016, CAS COUNTS US
  14. Cunha MS, 2016, GENOME ANNOUNC, V4
  15. Davidson A, 2016, MMWR-MORBID MORTAL W, V65, P716, DOI 10.15585/mmwr.mm6528e2
  16. Deckard DT, 2016, MMWR-MORBID MORTAL W, V65, P372, DOI 10.15585/mmwr.mm6514a3
  17. European Center for Disease Prevention and Control (ECDC), 2014, RAP RISK ASS ZIK VIR
  18. European Center for Disease Prevention and Control (ECDC), 2016, ZIK VIR SAF SUBST HU
  19. Fleming-Dutra KE, 2016, MMWR-MORBID MORTAL W, V65, P182, DOI 10.15585/mmwr.mm6507e1
  20. Foy BD, 2011, EMERG INFECT DIS, V17, P880, DOI 10.3201/eid1705.101939
  21. Galel S, 2016, TRANSFUSION, V57
  22. Gourinat AC, 2015, EMERG INFECT DIS, V21, P84, DOI 10.3201/eid2101.140894
  23. Gulland A, 2016, BMJ-BRIT MED J, V352, DOI 10.1136/bmj.i657
  24. Jayakumar P, 2016, SOUTH MED J, V109, P697, DOI 10.14423/SMJ.0000000000000550
  25. Lanciotti RS, 2008, EMERG INFECT DIS, V14, P1232, DOI 10.3201/eid1408.080287
  26. Lanteri MC, 2016, TRANSFUSION, V56, P1907, DOI 10.1111/trf.13677
  27. Mlakar J, 2016, NEW ENGL J MED, V374, P951, DOI 10.1056/NEJMoa1600651
  28. Motta IJF, 2016, NEW ENGL J MED, V375, P1101, DOI 10.1056/NEJMc1607262
  29. Musso D, 2014, CLIN MICROBIOL INFEC, V20, pO595, DOI 10.1111/1469-0691.12707
  30. Musso D, 2014, EUROSURVEILLANCE, V19, P6, DOI 10.2807/1560-7917.ES2014.19.14.20761
  31. Musso D, 2016, LANCET, V387, P1993, DOI 10.1016/S0140-6736(16)30428-7
  32. Musso D, 2016, CLIN MICROBIOL REV, V29, P487, DOI 10.1128/CMR.00072-15
  33. Musso D, 2015, EMERG INFECT DIS, V21, P1887, DOI 10.3201/eid2110.151125
  34. Musso D, 2015, J CLIN VIROL, V68, P53, DOI 10.1016/j.jcv.2015.04.021
  35. Musso D, 2015, EMERG INFECT DIS, V21, P359, DOI 10.3201/eid2102.141363
  36. Nunes ML, 2016, J PEDIAT-BRAZIL, V92, P230, DOI 10.1016/j.jped.2016.02.009
  37. Oduyebo T, 2016, MMWR-MORBID MORTAL W, V65, P122, DOI 10.15585/mmwr.mm6505e2
  38. Oliveira M. A. S., 2016, ULTRASOUND OBST GYN, V47, P6, DOI 10.1002/U0G.15831
  39. Petersen EE, 2016, MMWR-MORBID MORTAL W, V65, P30, DOI 10.15585/mmwr.mm6502e1
  40. Richard V, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0005024
  41. Sarno M, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004517
  42. Staples JE, 2016, MMWR-MORBID MORTAL W, V65, P63, DOI 10.15585/mmwr.mm6503e3
  43. Trosemeier JH, 2016, GENOME ANNOUNC, V4
  44. US Food and Drug Administration, EM US AUTH
  45. US Food and Drug Administration (FDA), 2016, REC DON SCREEN DEF P
  46. US Food and Drug Administration (FDA), 2016, REV REC RED RISK ZIK
  47. Wang JN, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13101031
  48. Weiner E, 2016, 2016 AABB ANN M OCT
  49. World Health Organizationo (WHO), 2016, MAINT SAF AD BLOOD S
  50. Williamson P, 2016, TRANSFUSION, V57
  51. Zhang FC, 2016, LANCET INFECT DIS, V16, P641, DOI 10.1016/S1473-3099(16)30070-6