Acute exercise elicits differential expression of insulin resistance genes in the skeletal muscle of patients with polycystic ovary syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
DANTAS, Wagner Silva
MURAI, Igor Hisashi
PERANDINI, Luiz Augusto
CAMARA, Niels Olsen Saraiva
Citação
CLINICAL ENDOCRINOLOGY, v.86, n.5, p.688-697, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
ObjectiveThis study aimed to explore the role of acute exercise on skeletal muscle gene expression related to insulin resistance in patients with polycystic ovary syndrome (PCOS) and controls. MethodsFour obese women with PCOS and four body mass index (BMI)-matched controls (CTRL) participated in this study. After an overnight fast, the subjects underwent a single 40-min bout of aerobic exercise. Muscle samples were obtained from vastus lateralis at baseline and 60 min after exercise. The expression of a panel of insulin resistance genes was evaluated by a quantitative PCR array system. Network-based analyses were performed to interpret transcriptional changes occurring before and after the exercise challenge. ResultsOverall, differentially expressed genes associated with mitochondria function and peroxisome proliferator-activated receptor signalling were identified. At baseline, there was a significant upregulation of six genes exclusively in PCOS (i.e. NFKBIA, MAPK3, PPARGC1A, GAPDH, ACTB and PPARA). Twelve genes were upregulated in CTRL after a single bout of aerobic exercise (i.e. LEPR, CXCR4, CCR5, IL-18R1, CRLF2, ACACA, CEBPA, PPARGC1A, UCP1, TNFRSF1B, TLR4 and IKBKB). After the exercise session, three genes were upregulated in PCOS (i.e. SOCS3, NAMPT and IL-8), whilst IL-6 was upregulated in both groups after exercise. ConclusionsThis study provides novel evidence on the effects of acute exercise on insulin resistance genes in skeletal muscle of PCOS. The differentially expressed genes reported herein could be further investigated as targets for therapeutic interventions aimed at improving insulin resistance in this syndrome.
Palavras-chave
Referências
  1. Abdul-Ghani MA, 2007, DIABETES CARE, V30, P89, DOI 10.2337/dc06-1519
  2. Adjeitey CNK, 2013, AM J PHYSIOL-ENDOC M, V305, pE405, DOI 10.1152/ajpendo.00057.2013
  3. Arruda AP, 2014, NAT MED, V20, P1427, DOI 10.1038/nm.3735
  4. Azziz R, 2004, J CLIN ENDOCR METAB, V89, P2745, DOI 10.1210/jc.2003-032046
  5. Chazenbalk G, 2012, J CLIN ENDOCR METAB, V97, pE765, DOI 10.1210/jc.2011-2377
  6. Corbould A, 2006, DIABETES, V55, P751, DOI 10.2337/diabetes.55.03.06.db05-0453
  7. Costford SR, 2010, AM J PHYSIOL-ENDOC M, V298, pE117, DOI 10.1152/ajpendo.00318.2009
  8. Covington JD, 2016, BIOCHIMIE, V124, P27, DOI 10.1016/j.biochi.2014.10.028
  9. Crisan M, 2008, STEM CELLS, V26, P2425, DOI 10.1634/stemcells.2008-0325
  10. Dantas WS, 2015, OBESITY, V23, P2207, DOI 10.1002/oby.21217
  11. Fields DA, 2000, INT J OBESITY, V24, P200, DOI 10.1038/sj.ijo.0801113
  12. Freedson PS, 1998, MED SCI SPORT EXER, V30, P777, DOI 10.1097/00005768-199805000-00021
  13. Friebe D, 2011, DIABETOLOGIA, V54, P1200, DOI 10.1007/s00125-010-2042-z
  14. Frosig C, 2007, DIABETES, V56, P2093, DOI 10.2337/db06-1698
  15. Frydelund-Larsen L, 2007, EXP PHYSIOL, V92, P233, DOI 10.1113/expphysiol.2006.034769
  16. Gonzalez F, 2012, J CLIN ENDOCR METAB, V97, P2836, DOI 10.1210/jc.2012-1259
  17. Harrison CL, 2012, CLIN ENDOCRINOL, V76, P351, DOI 10.1111/j.1365-2265.2011.04160.x
  18. Hojlund K, 2008, DIABETES, V57, P357, DOI 10.2337/db07-0706
  19. Huffman KM, 2014, DIABETOLOGIA, V57, P2282, DOI 10.1007/s00125-014-3343-4
  20. Hutchison SK, 2012, DIABETOLOGIA, V55, P1424, DOI 10.1007/s00125-011-2442-8
  21. Kraniou Y, 2000, J APPL PHYSIOL, V88, P794
  22. Lansley KE, 2011, INT J SPORTS MED, V32, P535, DOI 10.1055/s-0031-1273754
  23. Levy YA, 2015, AM J PHYSIOL-ENDOC M, V309, pE22, DOI 10.1152/ajpendo.00513.2014
  24. Montojo J, 2010, BIOINFORMATICS, V26, P2927, DOI 10.1093/bioinformatics/btq562
  25. Morton TL, 2016, FRONT ENDOCRINOL, V7, DOI 10.3389/fendo.2016.00080
  26. Neubauer O, 2014, J APPL PHYSIOL, V116, P274, DOI 10.1152/japplphysiol.00909.2013
  27. Pilegaard H, 2000, AM J PHYSIOL-ENDOC M, V279, pE806
  28. Poole DC, 2008, EUR J APPL PHYSIOL, V102, P403, DOI 10.1007/s00421-007-0596-3
  29. Popov DV, 2015, J MOL ENDOCRINOL, V55, P159, DOI 10.1530/JME-15-0150
  30. Ricquier D, 2000, BIOCHEM J, V345, P161, DOI 10.1042/0264-6021:3450161
  31. Safdar A, 2016, NAT REV ENDOCRINOL, V12, P504, DOI 10.1038/nrendo.2016.76
  32. Schnyder S, 2015, BONE, V80, P115, DOI 10.1016/j.bone.2015.02.008
  33. Skov V, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002466
  34. Skov V, 2007, DIABETES, V56, P2349, DOI 10.2337/db07-0275
  35. Stener-Victorin E, 2012, FERTIL STERIL, V97, P501, DOI 10.1016/j.fertnstert.2011.11.010
  36. Su G, 2010, BIOINFORMATICS, V26, P3135, DOI 10.1093/bioinformatics/btq596
  37. Umpierre D, 2011, JAMA-J AM MED ASSOC, V305, P1790, DOI 10.1001/jama.2011.576
  38. Vermeulen A, 1999, J CLIN ENDOCR METAB, V84, P3666, DOI 10.1210/jc.84.10.3666
  39. WASSERMAN K, 1973, J APPL PHYSIOL, V35, P236
  40. Wild RA, 2010, J CLIN ENDOCR METAB, V95, P2038, DOI 10.1210/jc.2009-2724