Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2017
Editora
PUBLIC LIBRARY SCIENCE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PLOS ONE, v.12, n.5, article ID e0177575, 12p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Delta Adduction and Delta Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p >.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance.
Palavras-chave
Referências
  1. Arab AM, 2011, NEUROUROL URODYNAM, V30, P117, DOI 10.1002/nau.20959
  2. Ashton-Miller JA, 2007, ANN NY ACAD SCI, V1101, P266, DOI 10.1196/annals.1389.034
  3. Ashton-Miller JA, 2014, CLIN BIOMECH, V29, P1146, DOI 10.1016/j.clinbiomech.2014.09.011
  4. BO K, 1994, NEUROUROL URODYNAM, V13, P35, DOI 10.1002/nau.1930130106
  5. Bo K, 2009, OBSTET GYNECOL, V113, P1279, DOI 10.1097/AOG.0b013e3181a66f40
  6. Brubaker L, 1996, AM J OBSTET GYNECOL, V175, P10
  7. CALDWELL LS, 1974, AM IND HYG ASSOC J, V35, P201, DOI 10.1080/0002889748507023
  8. Delancey JOL, 2004, GASTROENTEROLOGY, V126, pS23, DOI 10.1053/j.gastro.2003.10.080
  9. Devreese A, 2004, NEUROUROL URODYNAM, V23, P190, DOI 10.1002/nau.20018
  10. Dietz HP, 2006, BJOG-INT J OBSTET GY, V113, P225, DOI 10.1111/j.1471-0528.2006.00819.x
  11. Dumoulin C, 2004, NEUROUROL URODYNAM, V23, P134, DOI 10.1002/nau-10175
  12. Dumoulin C., 2014, COCHRANE DB SYST REV, V5, DOI 10.1002/14651858.CD005654
  13. Dumoulin C, 2015, NEUROUROL URODYNAM, V34, P300, DOI 10.1002/nau.22700
  14. Frawley HC, 2006, NEUROUROL URODYNAM, V25, P236, DOI 10.1002/nau.20201
  15. Hodges PW, 2014, J ELECTROMYOGR KINES, V24, P489, DOI 10.1016/j.jelekin.2014.03.011
  16. HOFBAUER J, 1990, Z UROL NEPHROL, V83, P249
  17. Huijing P. A., 2007, J BIOMECH, V42, P9
  18. Huijing PA, 1999, J BIOMECH, P329
  19. Kepenekci I, 2011, DIS COLON RECTUM, V54, P85, DOI 10.1007/DCR.0b013e3181fd2356
  20. Lamin E, 2016, CURR UROL REP, V17, DOI 10.1007/s11934-015-0572-0
  21. Laycock J, 2001, PHYSIOTHERAPY, V87, P631, DOI 10.1016/S0031-9406(05)61108-X
  22. Madill SJ, 2006, NEUROUROL URODYNAM, V25, P722, DOI 10.1002/nau.20285
  23. Madill SJ, 2010, J ELECTROMYOGR KINES, V20, P804, DOI 10.1016/j.jelekin.2009.10.006
  24. Messelink B, 2005, NEUROUROL URODYNAM, V24, P374, DOI 10.1002/nau.20144
  25. Morin M, 2007, NEUROUROL URODYNAM, V26, P397, DOI 10.1002/nau.20334
  26. Morin M, 2004, NEUROUROL URODYNAM, V23, P668, DOI 10.1002/nau.20069
  27. Morin M, 2004, NEUROUROL URODYNAM, V23, P336, DOI 10.1002/nau.20021
  28. Occelli B, 2001, EUR J OBSTET GYN R B, V97, P213, DOI 10.1016/S0301-2115(00)00527-3
  29. Peschers UM, 2001, INT UROGYNECOL J PEL, V12, P27, DOI 10.1007/s001920170090
  30. Pit MJ, 2003, CLIN ANAT, V16, P131, DOI 10.1002/ca.10102
  31. Sapsford RR, 2001, NEUROUROL URODYNAM, V20, P31, DOI 10.1002/1520-6777(2001)20:1<31::AID-NAU5>3.0.CO;2-P
  32. Tan L, 2015, INT UROGYNECOL J, V26, P1667, DOI 10.1007/s00192-015-2759-9
  33. Toozs-Hobson P, 2012, INT UROGYNECOL J, V23, P527, DOI 10.1007/s00192-012-1726-y
  34. Vaarbakken K, 2014, CLIN BIOMECH, V29, P794, DOI 10.1016/j.clinbiomech.2014.05.011
  35. Voorham-van der Zalm PJ, 2013, NEUROUROL URODYNAM, V32, P341, DOI 10.1002/nau.22311
  36. Weir JP, 2005, J STRENGTH COND RES, V19, P231, DOI 10.1519/15184.1
  37. Yucesoy CA, 2003, J BIOMECH, V36, P1797, DOI 10.1016/S0021-9290(03)00230-6
  38. Yucesoy CA, 2010, EXERC SPORT SCI REV, V38, P128, DOI 10.1097/JES.0b013e3181e372ef