Variable Ventilation Improved Respiratory System mechanics and Ameliorated pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2017
Editora
FRONTIERS MEDIA SA
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
SOLURI-MARTINS, Andre
MORAES, Lillian
SANTOS, Raquel S.
SANTOS, Cintia L.
HUHLE, Robert
PELOSI, Paolo
SILVA, Pedro L.
ABREU, Marcelo Gama de
ROCCO, Patricia R. M.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
FRONTIERS IN PHYSIOLOGY, v.8, article ID 257, 12p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group) [tidal volume (V-T) = 6 mL/kg, positive endexpiratory pressure (PEEP) = 2 cmH(2)O, fraction of inspired oxygen (FiO2) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated V-T values (n = 1200; mean V-T = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory systemmechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean +/- SD, VCV 3.6 +/- 1.3 cmH20/ml and 2.0 +/- 0.8 cmH(2)O/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9-33.1] and VV 5.4% [3.1-8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular adhesion molecule-1 compared to NV, with no significant differences between VV and NV. Compared to VCV, VV increased the expression of surfactant protein-D, suggesting protection from type II epithelial cell damage. In conclusion, in this experimental lung ischemia-reperfusion model, VV improved respiratory system elastance and reduced lung damage compared to VCV.
Palavras-chave
lung ischemia-reperfusion, variable ventilation, respiratory system mechanics, inflammation, molecular biology
Referências
  1. Akamine R, 2007, J BIOCHEM BIOPH METH, V70, P481, DOI 10.1016/j.jbbm.2006.11.008
  2. Arold SP, 2003, AM J PHYSIOL-LUNG C, V285, pL370, DOI 10.1152/ajplung.00036.2003
  3. Arold SP, 2009, AM J PHYSIOL-LUNG C, V296, pL574, DOI 10.1152/ajplung.90454.2008
  4. Boasquevisque Carlos Henrique R, 2009, Proc Am Thorac Soc, V6, P66, DOI 10.1513/pats.200808-083GO
  5. Carvalho AR, 2013, ANESTH ANALG, V116, P627, DOI 10.1213/ANE.0b013e31824a95ca
  6. Carvalho AR, 2013, ANESTH ANALG, V116, P677, DOI 10.1213/ANE.0b013e318254230b
  7. Christie JD, 2005, J HEART LUNG TRANSPL, V24, P1451, DOI 10.1016/j.healun.2005.03.004
  8. de Abreu MG, 2008, CRIT CARE MED, V36, P818, DOI 10.1097/01.CCM.0000299736.55039.3A
  9. de Abreu MG, 2003, ANESTH ANALG, V96, P220, DOI 10.1213/01.ANE.0000040081.52397.34
  10. de Perrot M, 2003, AM J RESP CRIT CARE, V167, P490, DOI 10.1164/rccm.200207-670SO
  11. den Hengst WA, 2010, AM J PHYSIOL-HEART C, V299, pH1283, DOI 10.1152/ajpheart.00251.2010
  12. Eppinger MJ, 1997, AM J PATHOL, V150, P1773
  13. FISHER AB, 1991, J CLIN INVEST, V88, P674, DOI 10.1172/JCI115352
  14. Frey U, 1998, J APPL PHYSIOL, V85, P789
  15. Gilmont RR, 1996, J SURG RES, V61, P175, DOI 10.1006/jsre.1996.0101
  16. HAMVAS A, 1992, J APPL PHYSIOL, V72, P621
  17. Henriques I, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00277
  18. Huhle R, 2016, CRIT CARE, V20, DOI 10.1186/s13054-016-1216-6
  19. Huhle R, 2014, EXP LUNG RES, V40, P186, DOI 10.3109/01902148.2014.900156
  20. Imsirovic J., 2013, BIOMATTER, V3, DOI 10.4161/biom.24650
  21. Ishiyama T, 2005, J THORAC CARDIOV SUR, V130, P194, DOI 10.1016/j.jtcvs.2005.02.040
  22. JURMANN MJ, 1990, EUR J CARDIO-THORAC, V4, P665, DOI 10.1016/1010-7940(90)90059-9
  23. KANO SH, 1994, J APPL PHYSIOL, V77, P1185
  24. Kiss T, 2016, BRIT J ANAESTH, V116, P708, DOI 10.1093/bja/aew093
  25. LANSMAN JB, 1988, NATURE, V331, P481, DOI 10.1038/331481a0
  26. Lockinger A, 2001, TRANSPLANTATION, V71, P185
  27. Ma BS, 2011, J APPL PHYSIOL, V110, P1319, DOI 10.1152/japplphysiol.01364.2010
  28. Matute-Bello G, 2011, AM J RESP CELL MOL, V44, P725, DOI 10.1165/rcmb.2009-0210ST
  29. Menezes SLS, 2005, J APPL PHYSIOL, V98, P1777, DOI 10.1152/japplphysiol.01182.2004
  30. Meyer KC, 2014, EUR RESPIR J, V44, P1479, DOI 10.1183/09031936.00107514
  31. Michelet P, 2006, ANESTHESIOLOGY, V105, P911, DOI 10.1097/00000542-200611000-00011
  32. Mittal M, 2014, ANTIOXID REDOX SIGN, V20, P1126, DOI 10.1089/ars.2012.5149
  33. Mutch WAC, 2000, AM J RESP CRIT CARE, V162, P319
  34. Nguyen T, 2009, J BIOL CHEM, V284, P13291, DOI 10.1074/jbc.R900010200
  35. Novick RJ, 1996, ANN THORAC SURG, V62, P302, DOI 10.1016/0003-4975(96)00333-5
  36. PALAZZO R, 1992, J APPL PHYSIOL, V72, P612
  37. Patroniti N, 2002, ANESTHESIOLOGY, V96, P788, DOI 10.1097/00000542-200204000-00004
  38. Pelosi P, 2003, AM J RESP CRIT CARE, V167, P521, DOI 10.1164/rccm.200203-198OC
  39. Riva DR, 2008, CRIT CARE MED, V36, P1900, DOI 10.1097/CCM.0b013e3181760e5d
  40. Roze H, 2012, BRIT J ANAESTH, V108, P1022, DOI 10.1093/bja/aes090
  41. Salis S, 2008, J CARDIOTHOR VASC AN, V22, P814, DOI 10.1053/j.jvca.2008.08.004
  42. Samary CS, 2016, CRIT CARE MED, V44, pE553, DOI 10.1097/CCM.0000000000001611
  43. Samary CS, 2015, ANESTHESIOLOGY, V123, P423, DOI 10.1097/ALN.0000000000000716
  44. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  45. Shen YX, 2013, J THORAC CARDIOV SUR, V146, P1267, DOI 10.1016/j.jtcvs.2013.06.043
  46. Silva PL, 2013, CRIT CARE MED, V41, pE256, DOI 10.1097/CCM.0b013e31828a3c13
  47. Soluri-Martins A, 2015, EUR J ANAESTH, V32, P828, DOI 10.1097/EJA.0000000000000291
  48. Spieth PM, 2015, ANESTHESIOLOGY, V122, P106, DOI 10.1097/ALN.0000000000000415
  49. Spieth PM, 2009, AM J RESP CRIT CARE, V179, P684, DOI 10.1164/rccm.200806-975OC
  50. Suzuki N, 1997, BIOCHEM BIOPH RES CO, V239, P372
  51. Swanson SJ, 2012, ANN THORAC SURG, V93, P1027, DOI 10.1016/j.athoracsur.2011.06.007
  52. Thammanomai A, 2008, J APPL PHYSIOL, V104, P1329, DOI 10.1152/japplphysiol.01002.2007
  53. Thammanomai A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053934
  54. TOBIN MJ, 1988, J APPL PHYSIOL, V65, P309
  55. Uhlig C, 2014, RESP RES, V15, DOI 10.1186/1465-9921-15-56
  56. Weibel E. R., 1990, MODELS LUNG DIS MICR, P199
  57. Wiedemann H. P., 2000, NEW ENGL J MED, V342, P1301
  58. Wolf M, 2009, J CARDIOVASC SURG, V50, P351
  59. Yang M, 2011, CHEST, V139, P530, DOI 10.1378/chest.09-2293
  60. Zhao QF, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-0835-7