In Vivo Imaging of Flavoprotein Fluorescence During Hypoxia Reveals the Importance of Direct Arterial Oxygen Supply to Cerebral Cortex Tissue

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
CHISHOLM, K. I.
DAVIES, A. L.
PAPKOVSKY, D. B.
SINGER, M.
DYSON, A.
TACHTSIDIS, I.
DUCHEN, M. R.
SMITH, K. J.
Citação
OXYGEN TRANSPORT TO TISSUE XXXVII, v.876, p.233-239, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Live imaging of mitochondrial function is crucial to understand the important role played by these organelles in a wide range of diseases. The mitochondrial redox potential is a particularly informative measure of mitochondrial function, and can be monitored using the endogenous green fluorescence of oxidized mitochondrial flavoproteins. Here, we have observed flavoprotein fluorescence in the exposed murine cerebral cortex in vivo using confocal imaging; the mitochondrial origin of the signal was confirmed using agents known to manipulate mitochondrial redox potential. The effects of cerebral oxygenation on flavoprotein fluorescence were determined by manipulating the inspired oxygen concentration. We report that flavoprotein fluorescence is sensitive to reductions in cortical oxygenation, such that reductions in inspired oxygen resulted in loss of flavoprotein fluorescence with the exception of a preserved 'halo' of signal in periarterial regions. The findings are consistent with reports that arteries play an important role in supplying oxygen directly to tissue in the cerebral cortex, maintaining mitochondrial function.
Palavras-chave
Oxygen, Mitochondria, Brain, Vasculature, Confocal microscope
Referências
  1. CHANCE B, 1979, J BIOL CHEM, V254, P4764
  2. Erecinska M, 2001, RESP PHYSIOL, V128, P263, DOI 10.1016/S0034-5687(01)00306-1
  3. Fink MP, 2002, CRIT CARE, V6, P491, DOI 10.1186/cc1824
  4. Huang SH, 2002, BIOPHYS J, V82, P2811
  5. IVANOV KP, 1982, PFLUG ARCH EUR J PHY, V393, P118, DOI 10.1007/BF00582403
  6. Ivanov KP, 1999, EUR J APPL PHYSIOL O, V80, P582, DOI 10.1007/s004210050637
  7. Kasischke KA, 2011, J CEREBR BLOOD F MET, V31, P68, DOI 10.1038/jcbfm.2010.158
  8. Krogh A, 1919, J PHYSIOL-LONDON, V52, P409
  9. Mahad D, 2008, NEUROPATH APPL NEURO, V34, P577, DOI 10.1111/j.1365-2990.2008.00987.x
  10. Reinert KC, 2004, J NEUROPHYSIOL, V92, P199, DOI 10.1152/jn.01275.2003
  11. Sakadzic S, 2010, NAT METHODS, V7, P755, DOI 10.1038/nmeth.1490
  12. Schapira AHV, 1998, ANN NEUROL, V44, pS89
  13. SCHOLZ R, 1969, J BIOL CHEM, V244, P2317
  14. Vovenko E, 1999, PFLUG ARCH EUR J PHY, V437, P617, DOI 10.1007/s004240050825