Nitroarachidonic acid (NO(2)AA) inhibits protein disulfide isomerase (PDI) through reversible covalent adduct formation with critical cysteines

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2017
Editora
ELSEVIER SCIENCE BV
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
GONZALEZ-PERILLI, Lucia
MASTROGIOVANNI, Mauricio
RUBBO, Homero
TROSTCHANSKY, Andres
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, v.1861, n.5, p.1131-1139, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Nitroarachidonic acid (NO(2)AA) exhibits pleiotropic anti-inflammatory actions in a variety of cell types. We have recently shown that NO(2)AA inhibits phagocytic NADPH oxidase 2 (NOX2) by preventing the formation of the active complex. Recent work indicates the participation of protein disulfide isomerase (PDI) activity in NOX2 activation. Cysteine (Cys) residues at PDI active sites could be targets for NO(2)AA- nitroalkylation regulating PDI activity which could explain our previous observation. Methods: PDI reductase and chaperone activities were assessed using the insulin and GFP renaturation methods in the presence or absence of NO(2)AA. To determine the covalent reaction with PDI as well as the site of reaction, the PEG-switch assay and LC-MS/MS studies were performed. Results and conclusions: We determined that both activities of PDI were inhibited by NO(2)AA in a dose- and time-dependent manner and independent from release of nitric oxide. Since nitroalkenes are potent electrophiles and PDI has critical Cys residues for its activity, then formation of a covalent adduct between NO(2)AA and PDI is feasible. To this end we demonstrated the reversible covalent modification of PDI by NO(2)AA. Trypsinization of modified PDI confirmed that the Cys residues present in the active site a' of PDI were key targets accounting for nitroalkene modification. General significance: PDI may contribute to NOX2 activation. As such, inhibition of PDI by NO(2)AA might be involved in preventing NOX2 activation. Future work will be directed to determine if the covalent modifications observed play a role in the reported NO(2)AA inhibition of NOX2 activity.
Palavras-chave
Nitroarachidonic acid, Protein disulfide isomerase, Nitroalkene, Mass spectrometry
Referências
  1. Appenzeller-Herzog C, 2008, ANTIOXID REDOX SIGN, V10, P55, DOI 10.1089/ars.2007.1837
  2. Baker LMS, 2007, J BIOL CHEM, V282, P31085, DOI 10.1074/jbc.M704085200
  3. Baker PRS, 2005, J BIOL CHEM, V280, P42464, DOI 10.1074/jbc.M504212200
  4. Baker PRS, 2004, P NATL ACAD SCI USA, V101, P11577, DOI 10.1073/pnas.0402587101
  5. Batthyany C, 2006, J BIOL CHEM, V281, P20450, DOI 10.1074/jbc.M602814200
  6. Bechor E, 2015, FRONT CHEM, V3, DOI 10.3389/fchem.2015.00003
  7. Bonacci G, 2012, J BIOL CHEM, V287, P44071, DOI 10.1074/jbc.M112.401356
  8. Bonilla L, 2013, ARCH BIOCHEM BIOPHYS, V533, P55, DOI 10.1016/j.abb.2013.03.001
  9. Burgoyne JR, 2013, J PHARMACOL TOX MET, V68, P297, DOI 10.1016/j.vascn.2013.07.001
  10. Clissold PM, 2003, BIOESSAYS, V25, P603, DOI 10.1002/bies.10287
  11. Cui T, 2006, J BIOL CHEM, V281, P35686, DOI 10.1074/jbc.M603357200
  12. Dahan I, 2015, J LEUKOCYTE BIOL, V98, P859, DOI 10.1189/jlb.4A0315-107R
  13. Dang PMC, 2002, P NATL ACAD SCI USA, V99, P4262, DOI 10.1073/pnas.072345299
  14. de A.P.A.M., 2011, J LEUKOC BIOL, V90, P799
  15. Doussiere J, 1998, EUR J BIOCHEM, V251, P649, DOI 10.1046/j.1432-1327.1998.2510649.x
  16. Ellgaard L, 2005, EMBO REP, V6, P28, DOI 10.1038/sj.embor.7400311
  17. ELLMAN GL, 1959, ARCH BIOCHEM BIOPHYS, V82, P70, DOI 10.1016/0003-9861(59)90090-6
  18. Essex DW, 2001, BIOCHEMISTRY-US, V40, P6070, DOI 10.1021/bi002454e
  19. Fernandes DC, 2009, ARCH BIOCHEM BIOPHYS, V484, P197, DOI 10.1016/j.abb.2009.01.022
  20. Ferreira AM, 2012, FREE RADICAL BIO MED, V53, P1654, DOI 10.1016/j.freeradbiomed.2012.08.572
  21. Ferreira AM, 2009, BIOCHEM J, V417, P223, DOI 10.1042/BJ20080701
  22. Flaumenhaft R, 2015, ARTERIOSCL THROM VAS, V35, P16, DOI 10.1161/ATVBAHA.114.303410
  23. Freeman BA, 2008, J BIOL CHEM, V283, P15515, DOI 10.1074/jbc.R800004200
  24. Gonzalez-Perilli L, 2013, FREE RADICAL BIO MED, V58, P126, DOI 10.1016/j.freeradbiomed.2012.12.020
  25. Gorzalczany Y, 2000, J BIOL CHEM, V275, P40073, DOI 10.1074/jbc.M006013200
  26. Haefliger S, 2011, BLOOD, V117, P5931, DOI 10.1182/blood-2010-08-304485
  27. Hatahet F, 2009, ANTIOXID REDOX SIGN, V11, P2807, DOI 10.1089/ARS.2009.2466
  28. Imaoka S, 2011, INT REV CEL MOL BIO, V290, P121, DOI 10.1016/B978-0-12-386037-8.00003-X
  29. Janiszewski M, 2005, J BIOL CHEM, V280, P40813, DOI 10.1074/jbc.M509255200
  30. Kawahara T, 2007, BMC EVOL BIOL, V7, DOI 10.1186/147-2148-7-109
  31. Keller M, 2008, CELL, V132, P818, DOI 10.1016/j.cell.2007.12.040
  32. Kemmink J, 1996, BIOCHEMISTRY-US, V35, P7684, DOI 10.1021/bi960335m
  33. Kreck ML, 1996, BIOCHEMISTRY-US, V35, P15683, DOI 10.1021/bi962064l
  34. Laurindo FRM, 2008, ANTIOXID REDOX SIGN, V10, P1101, DOI 10.1089/ars.2007.2011
  35. Laurindo FRM, 2012, FREE RADICAL BIO MED, V52, P1954, DOI 10.1016/j.freeradbiomed.2012.02.037
  36. Lim DG, 2002, P NATL ACAD SCI USA, V99, P15941, DOI 10.1073/pnas.232409599
  37. Lima ES, 2005, FREE RADICAL BIO MED, V39, P532, DOI 10.1016/j.freeradbiomed.2005.04.005
  38. LUNDSTROM J, 1990, J BIOL CHEM, V265, P9114
  39. Manickam N, 2008, BRIT J HAEMATOL, V140, P223, DOI 10.1111/j.1365-2141.2007.06898.x
  40. Mares RE, 2011, INT J MOL SCI, V12, P4625, DOI 10.3390/ijms12074625
  41. Ferreira AM, 2008, METHOD ENZYMOL, V441, P33, DOI 10.1016/S0076-6879(08)01203-2
  42. Nakamura T, 2007, CELL MOL LIFE SCI, V64, P1609, DOI 10.1007/s00018-007-6525-0
  43. Nishida S, 2005, INFECT IMMUN, V73, P235, DOI 10.1128/IAI.73.1.235-244.2005
  44. O'Donnell VB, 1999, CHEM RES TOXICOL, V12, P83, DOI 10.1021/tx980207u
  45. Park B, 2006, CELL, V127, P369, DOI 10.1016/j.cell.2006.08.041
  46. Pescatore LA, 2012, J BIOL CHEM, V287, P29290, DOI 10.1074/jbc.M112.394551
  47. Rubbo H, 2013, BRAZ J MED BIOL RES, V46, P728, DOI 10.1590/1414-431X20133202
  48. Rubbo H, 2008, BBA-GEN SUBJECTS, V1780, P1318, DOI 10.1016/j.bbagen.2008.03.007
  49. Salvatore SR, 2013, J LIPID RES, V54, P1998, DOI 10.1194/jlr.M037804
  50. Santos CXC, 2009, J LEUKOCYTE BIOL, V86, P989, DOI 10.1189/jlb.0608354
  51. Schopfer FJ, 2009, FREE RADICAL BIO MED, V46, P1250, DOI 10.1016/j.freeradbiomed.2008.12.025
  52. Schopfer FJ, 2005, J BIOL CHEM, V280, P19289, DOI 10.1074/jbc.M414689200
  53. Schopfer FJ, 2005, P NATL ACAD SCI USA, V102, P2340, DOI 10.1073/pnas.0408384102
  54. Schwaller M, 2003, J BIOL CHEM, V278, P7154, DOI 10.1074/jbc.M211036200
  55. Trostchansky A, 2007, AMINO ACIDS, V32, P517, DOI 10.1007/s00726-006-0426-7
  56. Trostchansky A, 2003, FREE RADICAL BIO MED, V35, P1293, DOI 10.1016/j.freeradbiomed.2003.07.004
  57. Trostchansky A, 2001, ARCH BIOCHEM BIOPHYS, V395, P225, DOI 10.1006/abbi.2001.2583
  58. Trostchansky A, 2007, BIOCHEMISTRY-US, V46, P4645, DOI 10.1021/bi602652j
  59. Trostchansky A, 2013, ANTIOXID REDOX SIGN, V19, P1257, DOI 10.1089/ars.2012.5023
  60. Trostchansky A, 2011, J BIOL CHEM, V286, P12891, DOI 10.1074/jbc.M110.154518
  61. Tsikas D, 2011, BBA-MOL CELL BIOL L, V1811, P694, DOI 10.1016/j.bbalip.2011.06.015
  62. Tsikas D, 2009, LIPIDS, V44, P855, DOI 10.1007/s11745-009-3332-4
  63. Tsunawaki S, 2004, INFECT IMMUN, V72, P3373, DOI 10.1128/IAI.72.6.3373-3382.2004
  64. Uehara T, 2006, NATURE, V441, P513, DOI 10.1038/nature04782
  65. VANIWAARDEN PR, 1992, BIOCHIM BIOPHYS ACTA, V1113, P161, DOI 10.1016/0304-4157(92)90037-B
  66. Vitturi DA, 2013, J BIOL CHEM, V288, P25626, DOI 10.1074/jbc.M113.486282
  67. Vitu E, 2010, J BIOL CHEM, V285, P18155, DOI 10.1074/jbc.M109.064931
  68. Wang C, 2012, J BIOL CHEM, V287, P1139, DOI 10.1074/jbc.M111.303149
  69. Watanabe MM, 2014, FRONT CHEM, V2, DOI 10.3389/fchem.2014.00073
  70. Wilkinson B, 2004, BBA-PROTEINS PROTEOM, V1699, P35, DOI 10.1016/j.bbapap.2004.02.017
  71. Zhou J., 2015, J CLIN INVEST, V2015