Morphogenetic characterisation, date of divergence, and evolutionary relationships of malaria vectors Anopheles cruzii and Anopheles homunculus

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2015
Editora
ELSEVIER SCIENCE BV
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
LORENZ, Camila
PATANE, Jose S. L.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
INFECTION GENETICS AND EVOLUTION, v.35, p.144-152, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The mosquito species Anopheles cruzii and Anopheles homunculus are co-occurring vectors for etiological agents of malaria in southeastern Brazil, a region known to be a major epidemic spot for malaria outside Amazon region. We sought to better understand the biology of these species in order to contribute to future control efforts by (1) improving species identification, which is complicated by the fact that the females are very similar, (2) investigating genetic composition and morphological differences between the species, (3) inferring their phylogenetic histories in comparison with those of other Anophelinae, and (4) dating the evolutionary divergence of the two species. To characterise the species we used wing geometry and mitochondrial cytochrome oxidase subunit I (COI) gene as morphological and genetic markers, respectively. We also used the genes white, 28S, ITS2, Cytb, and COI in our phylogenetic and dating analyses. A comparative analysis of wing thin-plate splines revealed species-specific wing venation patterns, and the species An. cruzii showed greater morphological diversity (8.74) than An. homunculus (5.58). Concerning the COI gene, An. cruzii was more polymorphic and also showed higher haplotype diversity than An. homunculus, with many rare haplotypes that were displayed by only a few specimens. Phylogenetic analyses revealed that all tree topologies converged and showed [Anopheles bellator + An. homunculus] and [Anopheles laneanus + An. cruzii] as sister clades. Diversification within the subgenus Kerteszia occurred 2-14.2 million years ago. The landmark data associated with wing shape were consistent with the molecular phylogeny, indicating that this character can distinguish higher level phylogenetic relationships within the Anopheles group. Despite their morphological similarities and cooccurrence, An. cruzii and An. homunculus show consistent differences. Phylogenetic analysis revealed that the species are not sister-groups but species that recently diverged within the Kerteszia group, perhaps concomitantly with the radiation of bromeliads in South America or during the Pleistocene climate oscillations.
Palavras-chave
Evolution, Morphometrics, Polymorphism, Kerteszia, COI gene, Atlantic Forest
Referências
  1. Besansky NJ, 1997, MOL BIOL EVOL, V14, P442
  2. BROWER AVZ, 1994, P NATL ACAD SCI USA, V91, P6491, DOI 10.1073/pnas.91.14.6491
  3. Minh BQ, 2013, MOL BIOL EVOL, V30, P1188, DOI 10.1093/molbev/mst024
  4. Calado DC, 2005, REV BRAS ZOOL, V22, P1127, DOI 10.1590/S0101-81752005000400045
  5. Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x
  6. David B, 1996, EVOLUTION, V50, P348, DOI 10.1111/j.1558-5646.1996.tb04498.x
  7. de Carvalho-Pinto CJ, 2004, MEM I OSWALDO CRUZ, V99, P471, DOI 10.1590/S0074-02762004000500002
  8. de Pina-Costa A, 2014, MEM I OSWALDO CRUZ, V109, P618, DOI 10.1590/0074-0276140228
  9. DEANE LM, 1988, AM J TROP MED HYG, V38, P223
  10. De Azeredo-Espin A.M.L., 2011, CODIGO BARRAS VIDA B
  11. DOWNS WG, 1946, AM J TROP MED, V26, P47
  12. Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214
  13. Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075
  14. Dujardin JP, 2008, INFECT GENET EVOL, V8, P875, DOI 10.1016/j.meegid.2008.07.011
  15. Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340
  16. FORATTINI O. P., 2002, CULICIDOLOGIA MED ID
  17. Forattini O. P., 1962, ENTOMOLOGIA MED, V1
  18. Fu YX, 1997, GENETICS, V147, P915
  19. Gaunt MW, 2002, MOL BIOL EVOL, V19, P748
  20. Givnish TJ, 2011, AM J BOT, V98, P872, DOI 10.3732/ajb.1000059
  21. Gomez GF, 2014, ACTA TROP, V135, P75, DOI 10.1016/j.actatropica.2014.03.020
  22. Henry A, 2010, INFECT GENET EVOL, V10, P207, DOI 10.1016/j.meegid.2009.12.001
  23. Hewitt G, 2000, NATURE, V405, P907, DOI 10.1038/35016000
  24. Roberts D.B., 1986, DROSOPHILA PRACTICAL
  25. Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x
  26. Krzywinski J, 2001, MOL PHYLOGENET EVOL, V18, P479, DOI 10.1006/mpev.2000.0894
  27. Lanfear R, 2012, MOL BIOL EVOL, V29, P1695, DOI 10.1093/molbev/mss020
  28. Levine RS, 2004, AM J TROP MED HYG, V70, P105
  29. Lima M.M., 1952, REV BRAS MALARIOL DO, V4, P411
  30. Lockwood CA, 2004, P NATL ACAD SCI USA, V101, P4356, DOI 10.1073/pnas.0306235101
  31. Lorenz C, 2012, PARASITE VECTOR, V5, P1
  32. Lounibos L. Philip, 2000, American Entomologist, V46, P238
  33. Lozovei Ana Leuch, 1999, Revista Brasileira de Zoologia, V16, P957
  34. Malafronte RDS, 2007, J MED ENTOMOL, V44, P538, DOI 10.1603/0022-2585(2007)44[538:IVOSIT]2.0.CO;2
  35. Marrelli MT, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-127
  36. Papadopoulou A, 2010, MOL BIOL EVOL, V27, P1659, DOI 10.1093/molbev/msq051
  37. Petersen V, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0740-6
  38. RACHOU R. G., 1958, REV BRASIL MALARIOL E DOENCAS TROP, V10, P417
  39. Ramirez CCL, 2000, GENETICA, V108, P73, DOI 10.1023/A:1004020904877
  40. Reidenbach KR, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-298
  41. Rohlf F.J., 2006, TPSDIG2 DIGITIZE LAN
  42. Rohlf F.J., 2004, TPSUTIL FILE UTILIGY
  43. Rohlf FJ, 2003, TPSREGR SHAPE REGRES
  44. Rohlf F. J., 2003, TPSRELW RELATIVE WAR
  45. Rona LDP, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-207
  46. Rona LDP, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-91
  47. Rona LDP, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-60
  48. Rosa-Freitas MG, 1998, MEM I OSWALDO CRUZ, V93, P651, DOI 10.1590/S0074-02761998000500016
  49. Rozas J, 2003, BIOINFORMATICS, V19, P2496, DOI 10.1093/bioinformatics/btg359
  50. Rua GL, 2005, MEM I OSWALDO CRUZ, V100, P515, DOI 10.1590/S0074-02762005000500011
  51. [Anonymous], 2012, PARAS VECT, DOI 10.1186/1756-3305-5-44
  52. Sallum MAM, 2002, SYST ENTOMOL, V27, P361, DOI 10.1046/j.1365-3113.2002.00182.x
  53. Sallum MAM, 2000, ANN ENTOMOL SOC AM, V93, P745, DOI 10.1603/0013-8746(2000)093[0745:POADCB]2.0.CO;2
  54. Smith L.B., 1952, ANN REP SMITHSON I, V92, P385
  55. Statsoft Inc, 2004, STAT WIND COMP PROGR
  56. TAJIMA F, 1989, GENETICS, V123, P585
  57. Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092
  58. Ueno HM, 2007, REV SAUDE PUBL, V41, P269, DOI 10.1590/S0034-89102007000200014
  59. Vaidya G., 2001, CLADISTICS, V2, P171
  60. VELOSO HENRIQUE P., 1956, MEM INST OSWALDO CRUZ, V54, P517
  61. Wiegmann BM, 2011, P NATL ACAD SCI USA, V108, P5690, DOI 10.1073/pnas.1012675108
  62. WILKERSON R C, 1991, Mosquito Systematics, V23, P110
  63. Xie W., 2010, SYST BIOL, V2, P150
  64. Zavortink TJ, 2000, ANN ENTOMOL SOC AM, V93, P1230, DOI 10.1603/0013-8746(2000)093[1230:ANDSND]2.0.CO;2
  65. Zavortink T. J., 1973, CONTRIBUTIONS AM ENT, V9, P1
  66. Zhang DX, 1996, INSECT MOL BIOL, V6, P143, DOI 10.1111/J.1365-2583.1997.TB00082.X