Trace element concentration differences in regions of human brain by INAA

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, v.296, n.1, p.267-272, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Studies have shown that there is a potential relationship between the levels of trace elements in cerebral tissues and neurological disorders. However, there are few publications available on the elemental composition of these tissues as well as for different regions of the brain. The aim of this study was to investigate trace element differences in various regions of the human brain from an elderly population of normal individuals. Brain samples from 31 individuals of both genders, aged 51-95 years were provided by the Brain Bank of the Brazilian Aging Study Group of the So Paulo University, Medical School. The tissues from the regions of the hippocampus, cerebellum and frontal, parietal, temporal, occipital cortex were dissected using a titanium knife, ground, freeze-dried and then analyzed by instrumental neutron activation analysis (INAA). Samples and element standards were irradiated with a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. One-way ANOVA test (p < 0.05) was used to compare the results which showed significant differences for several elements among the brain regions. Most of our brain analysis results agreed with the literature data. The results were also submitted for brain region classification by cluster analysis.
Palavras-chave
Human brain, Trace elements, Normal cognition
Referências
  1. ANDRASI E, 1990, BIOL TRACE ELEM RES, V26-7, P691, DOI 10.1007/BF02992725
  2. ANDRASI E, 1995, ARCH GERONTOL GERIAT, V21, P89, DOI 10.1016/0167-4943(95)00643-Y
  3. Andrasi E, 1999, SPECTROCHIM ACTA B, V54, P819, DOI 10.1016/S0584-8547(99)00039-7
  4. ANDRASI E, 1994, CHEMOMETR INTELL LAB, V22, P107, DOI 10.1016/0169-7439(93)E0048-9
  5. Belavaria C, 2005, MICROCHEM J, V79, P367, DOI 10.1016/j.microc.2004.05.001
  6. Bush AI, 2003, TRENDS NEUROSCI, V26, P207, DOI 10.1016/S0166-2236(03)00067-5
  7. Deibel MA, 1996, J NEUROL SCI, V143, P137, DOI 10.1016/S0022-510X(96)00203-1
  8. DUFLOU H, 1990, CHEMOMETR INTELL LAB, V9, P273, DOI 10.1016/0169-7439(90)80078-K
  9. Grinberg Lea Tenenholz, 2007, Cell and Tissue Banking, V8, P151, DOI 10.1007/s10561-006-9022-z
  10. HARMAN D, 1993, AGE, V16, P23, DOI 10.1007/BF02436127
  11. JAMES MF, 1992, NUCL INSTRUM METH A, V313, P277, DOI 10.1016/0168-9002(92)90106-E
  12. Konieczka P, 2009, QUALITY ASSURANCE AN, P27
  13. Kranda K, 2006, J RADIOANAL NUCL CHE, V3, P555
  14. Leite R, 2008, J RADIOANAL NUCL CH, V278, P581, DOI 10.1007/s10967-008-1009-8
  15. LevyLahad E, 1996, ANN NEUROL, V40, P829, DOI 10.1002/ana.410400604
  16. Lovell MA, 1998, J NEUROL SCI, V158, P47, DOI 10.1016/S0022-510X(98)00092-6
  17. Maynard CJ, 2005, INT J EXP PATHOL, V86, P147, DOI 10.1111/j.0959-9673.2005.00434.x
  18. MORRIS JC, 1993, NEUROLOGY, V43, P2412
  19. NITSCH RM, 1992, P NATL ACAD SCI USA, V89, P1671, DOI 10.1073/pnas.89.5.1671
  20. Panayi AE, 2002, J NEUROL SCI, V195, P1, DOI 10.1016/S0022-510X(01)00672-4
  21. Panayi AE, 2001, J RADIOANAL NUCL CH, V249, P437
  22. Shcherbatykh I, 2007, J ALZHEIMERS DIS, V11, P191
  23. Stedman JD, 1997, J RADIOANAL NUCL CH, V217, P163, DOI 10.1007/BF02034435
  24. VOLICER L, 1990, NEUROBIOL AGING, V11, P567, DOI 10.1016/0197-4580(90)90119-K
  25. WARD NI, 1987, J RADIOAN NUCL CH AR, V113, P515, DOI 10.1007/BF02050527
  26. WENSTRUP D, 1990, BRAIN RES, V533, P125, DOI 10.1016/0006-8993(90)91804-P
  27. Zhang F, 2006, J RADIOANAL NUCL CHE, V3, P535