Ebi3 Prevents Trypanosoma cruzi-Induced Myocarditis by Dampening IFN-gamma-Driven Inflammation

Nenhuma Miniatura disponível
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
MEDINA, Tiago Silva
OLIVEIRA, Gabriela Goncalves
SILVA, Maria Claudia
DAVID, Bruna Araujo
SILVA, Grace Kelly
FONSECA, Denise Morais
SESTI-COSTA, Renata
FRADE, Amanda Farage
Citação
FRONTIERS IN IMMUNOLOGY, v.8, article ID 1213, 17p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi-induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi. Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi-induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi-induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-gamma-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi-infected animals. Furthermore, in vivo IFN-gamma blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively, we describe a novel regulatory mechanism where Ebi3 dampens cardiac inflammation by modulating the overproduction of IFN-gamma, the bona fide culprit of Chagas disease cardiomyopathy.
Palavras-chave
Ebi3, interleukin-27, myeloid cells, IFN-gamma, Th1 lymphocytes, myocarditis, Trypanosoma cruzi, Chagas disease
Referências
  1. Abrahamsohn IA, 1996, EXP PARASITOL, V84, P231, DOI 10.1006/expr.1996.0109
  2. Anderson CF, 2009, J IMMUNOL, V183, P4619, DOI 10.4049/jimmunol.0804024
  3. Ansari NA, 2011, J IMMUNOL, V186, P3977, DOI 10.4049/jimmunol.1003588
  4. Bafica A, 2006, J IMMUNOL, V177, P3515
  5. Bohme J, 2016, IMMUNOLOGY, V147, P338, DOI 10.1111/imm.12565
  6. Bosmann M, 2013, J LEUKOCYTE BIOL, V94, P1159, DOI 10.1189/jlb.0213107
  7. Campos MA, 2001, J IMMUNOL, V167, P416
  8. Cardillo F, 1996, INFECT IMMUN, V64, P128
  9. Costa GC, 2009, J INFECT DIS, V199, P451, DOI 10.1086/596061
  10. D'Avila DA, 2009, MEM I OSWALDO CRUZ, V104, P100, DOI 10.1590/S0074-02762009000100015
  11. de Araujo FF, 2012, IMMUNOBIOLOGY, V217, P768, DOI 10.1016/j.imbio.2012.04.008
  12. Diveu C, 2009, J IMMUNOL, V182, P5748, DOI 10.4049/jimmunol.0801162
  13. do Rosario APF, 2012, J IMMUNOL, V188, P1178, DOI 10.4049/jimmunol.1102755
  14. Dulgerian LR, 2011, IMMUNOLOGY, V133, P29, DOI 10.1111/j.1365-2567.2011.03406.x
  15. Dutra WO, 2014, PARASITE IMMUNOL, V36, P377, DOI 10.1111/pim.12107
  16. Erdmann H, 2013, IMMUNOBIOLOGY, V218, P910, DOI 10.1016/j.imbio.2012.10.005
  17. Gomes JAS, 2003, INFECT IMMUN, V71, P1185, DOI 10.1128/IAI.71.3.1185-1193.2003
  18. Goncalves VM, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002469
  19. Graefe SEB, 2004, PARASITE IMMUNOL, V26, P19, DOI 10.1111/j.0141-9838.2004.00679.x
  20. Gutierrez FRS, 2014, EXPERT REV CARDIOVAS, V12, P187, DOI 10.1586/14779072.2014.879824
  21. Gutierrez FRS, 2011, INFECT IMMUN, V79, P1873, DOI 10.1128/IAI.01047-10
  22. Hamano S, 2003, IMMUNITY, V19, P657, DOI 10.1016/S1074-7613(03)00298-X
  23. Heinemann C, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4770
  24. Hunter CA, 1997, J IMMUNOL, V158, P3311
  25. Jones GW, 2015, J EXP MED, V212, P1793, DOI 10.1084/jem.20132307
  26. Laucella SA, 2004, J INFECT DIS, V189, P909, DOI 10.1086/381682
  27. Li ZX, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1004783
  28. Liu JG, 2007, J EXP MED, V204, P141, DOI 10.1084/jem.20061440
  29. Lucas S, 2003, P NATL ACAD SCI USA, V100, P15047, DOI 10.1073/pnas.2536517100
  30. Machado FS, 2000, CIRCULATION, V102, P3003
  31. Marim FM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015263
  32. Marin JA, 2007, CIRCULATION, V115, P1109, DOI 10.1161/CIRCULATIONAHA.106.624296
  33. Martins GA, 2004, J IMMUNOL, V172, P4893
  34. Mascanfroni ID, 2013, NAT IMMUNOL, V14, P1054, DOI 10.1038/ni.2695
  35. Guedes PMM, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001630
  36. Oliveira AC, 2004, J IMMUNOL, V173, P5688
  37. Owaki T, 2006, J IMMUNOL, V176, P2773
  38. Petes C, 2017, J LEUKOCYTE BIOL, V102, P83, DOI 10.1189/jlb.3A0316-098R
  39. Pflanz S, 2002, IMMUNITY, V16, P779, DOI 10.1016/S1074-7613(02)00324-2
  40. Pflanz S, 2004, J IMMUNOL, V172, P2225
  41. Pot C, 2009, J IMMUNOL, V183, P797, DOI 10.4049/jimmunol.0901233
  42. Sanoja C, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0065820, 10.1371/journal.pone.006]
  43. Silva GK, 2010, J IMMUNOL, V184, P1148, DOI 10.4049/jimmunol.0902254
  44. Silva GK, 2013, J IMMUNOL, V191, P3373, DOI 10.4049/jimmunol.1203293
  45. Silva JS, 2003, FRONT BIOSCI, V8, pS314, DOI 10.2741/1012
  46. Smits HH, 2004, EUR J IMMUNOL, V34, P1371, DOI 10.1002/eji.200324815
  47. Souza PEA, 2007, INFECT IMMUN, V75, P1886, DOI 10.1128/IAI.01931-06
  48. Souza PEA, 2004, INFECT IMMUN, V72, P5283, DOI 10.1128/IAI.72.9.5283-5291.2004
  49. Takeda A, 2003, J IMMUNOL, V170, P4886
  50. Talvani A, 2011, ADV PARASIT, V76, P171, DOI 10.1016/B978-0-12-385895-5.00008-6
  51. Tang SC, 2015, J NEUROL SCI, V348, P174, DOI 10.1016/j.jns.2014.11.035
  52. VESPA GNR, 1994, INFECT IMMUN, V62, P5177
  53. Wang H, 2011, IMMUNOL LETT, V136, P21, DOI 10.1016/j.imlet.2010.11.007
  54. Welch JS, 2002, J BIOL CHEM, V277, P42821, DOI 10.1074/jbc.M205873200
  55. Wilson CB, 2009, NAT REV IMMUNOL, V9, P91, DOI 10.1038/nri2487
  56. Xia SY, 2014, J LEUKOCYTE BIOL, V95, P733, DOI 10.1189/jlb.0713371