The relevance of feature selection methods to the classification of obsessive compulsive disorder based on volumetric measures

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2017
Editora
ELSEVIER SCIENCE BV
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
TRAMBAIOLLI, Lucas R.
BIAZOLI JR., Claudinei E.
BALARDIN, Joana B.
SATO, Joao R.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
JOURNAL OF AFFECTIVE DISORDERS, v.222, p.49-56, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Magnetic resonance images (MRI) show detectable anatomical and functional differences between individuals with obsessive-compulsive disorder (OCD) and healthy subjects. Moreover, machine learning techniques have been proposed as tools to identify potential biomarkers and, ultimately, to support clinical diagnosis. However, few studies to date have investigated feature selection (FS) influences in OCD MRI-based classification. Methods: Volumes of cortical and subcortical structures, from MRI data of 38 OCD patients (split into two groups according symptoms severity) and 36 controls, were submitted to seven feature selection algorithms. FS aims to select the most relevant and less redundant features which discriminate between two classes. Then, a classification step was applied, from which the classification performances before and after different FS were compared. For the performance evaluation, leave-one-subject-out accuracies of Support Vector Machine classifiers were considered. Results: Using different FS algorithms, performance improvement was achieved for Controls vs. All OCD discrimination (19.08% of improvement reducing by 80% the amount of features), Controls vs. Low OCD (20.10%, 75%), Controls vs. High OCD (17.32%, 85%) and Low OCD vs. High OCD (10.53%, 75%). Furthermore, all algorithms pointed out classical cortico-striato-thalamo-cortical circuitry structures as relevant features for OCD classification. Limitations: Limitations include the sample size and using only filter approaches for FS. Conclusions: Our results suggest that FS positively impacts. OCD classification using machine-learning techniques. Complementarily, FS algorithms were able to select biologically plausible features automatically.
Palavras-chave
Magnetic resonance imaging, Machine learning, Obsessive-compulsive disorder, Feature selection
Referências
  1. Abramovitch A, 2013, CLIN PSYCHOL REV, V33, P1163, DOI 10.1016/j.cpr.2013.09.004
  2. Bari A, 2013, PROG NEUROBIOL, V108, P44, DOI 10.1016/j.pneurobio.2013.06.005
  3. Bishop CM, 2006, PATTERN RECOGNITION
  4. Carmona S, 2007, NEUROSCI LETT, V421, P218, DOI 10.1016/j.neulet.2007.05.047
  5. Chen Y, 2006, FEATURE EXTRACTION, P315, DOI 10.1007/978-3-540-35488-8_13
  6. Cherian AV, 2014, J AFFECT DISORDERS, V152, P387, DOI 10.1016/j.jad.2013.09.042
  7. Chu C, 2012, NEUROIMAGE, V60, P59, DOI 10.1016/j.neuroimage.2011.11.066
  8. Cristianini N., 2000, INTRO SUPPORT VECTOR
  9. Dale AM, 1999, NEUROIMAGE, V9, P179, DOI 10.1006/nimg.1998.0395
  10. De Martino F, 2008, NEUROIMAGE, V43, P44, DOI 10.1016/j.neuroimage.2008.06.037
  11. Esterman M, 2010, NEUROIMAGE, V50, P572, DOI 10.1016/j.neuroimage.2009.10.092
  12. Fischl B, 2004, CEREB CORTEX, V14, P11, DOI 10.1093/cercor/bhg087
  13. Fischl B, 1999, NEUROIMAGE, V9, P195, DOI 10.1006/nimg.1998.0396
  14. Fischl B, 2002, NEURON, V33, P341, DOI 10.1016/S0896-6273(02)00569-X
  15. Fischl B, 2000, P NATL ACAD SCI USA, V97, P11050, DOI 10.1073/pnas.200033797
  16. Friedlander L, 2006, CLIN PSYCHOL REV, V26, P32, DOI 10.1016/j.cpr.2005.06.010
  17. Gilbert AR, 2008, J AFFECT DISORDERS, V109, P117, DOI 10.1016/j.jad.2007.12.223
  18. Gilbert AR, 2008, NEUROSCI LETT, V435, P45, DOI 10.1016/j.neulet.2008.02.011
  19. Goncalves OF, 2015, NEUROREPORT, V26, P495, DOI 10.1097/WNR.0000000000000377
  20. Habeck C, 2010, CELL BIOCHEM BIOPHYS, V58, P53, DOI 10.1007/s12013-010-9093-0
  21. Hall M., 2009, SIGKDD EXPLORATIONS, V11, P10, DOI 10.1145/1656274.1656278
  22. Hall MA, 1998, AUST COMP S, V20, P181
  23. Haynes JD, 2006, NAT REV NEUROSCI, V7, P523, DOI 10.1038/nrn1931
  24. Hoexter MQ, 2013, J AFFECT DISORDERS, V150, P1213, DOI 10.1016/j.jad.2013.05.041
  25. Hu XY, 2016, EUR NEUROPSYCHOPHARM, V26, P246, DOI 10.1016/j.euroneuro.2015.12.014
  26. JENKINS IH, 1994, J NEUROSCI, V14, P3775
  27. Kim J. J., 2001, BR J PSYCHIAT, V179
  28. Kloppel S, 2012, NEUROIMAGE, V61, P457, DOI 10.1016/j.neuroimage.2011.11.002
  29. Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X
  30. Koprivova J., 2009, NEUROSCI LETT, V464, P62
  31. Lazaro L, 2011, PROG NEURO-PSYCHOPH, V35, P1863, DOI 10.1016/j.pnpbp.2011.07.016
  32. Lazaro L, 2009, PSYCHIAT RES-NEUROIM, V172, P140, DOI 10.1016/j.pscychresns.2008.12.007
  33. Lee H. D., 2006, IBEROAM J ARTIF INTE, V32
  34. Li BJ, 2016, FRONT PSYCHIATRY, V7, DOI 10.3389/fpsyt.2016.00078
  35. Li F, 2014, HUM BRAIN MAPP, V35, P2643, DOI 10.1002/hbm.22357
  36. Liu H, 1995, PROC INT C TOOLS ART, P388, DOI 10.1109/TAI.1995.479783
  37. Liu H, 2008, CH CRC DATA MIN KNOW, P3
  38. Luts J, 2007, ARTIF INTELL MED, V40, P87, DOI 10.1016/j.artmed.2007.02.002
  39. Mancebo MC, 2014, COMPR PSYCHIAT, V55, P1498, DOI 10.1016/j.comppsych.2014.04.010
  40. Marchand WR, 2008, NEUROREPORT, V19, P957, DOI 10.1097/WNR.0b013e328302c873
  41. Menzies L, 2008, NEUROSCI BIOBEHAV R, V32, P525, DOI 10.1016/j.neubiorev.2007.09.005
  42. Mitchell TM, 2004, MACH LEARN, V57, P145, DOI 10.1023/B:MACH.0000035475.85309.1b
  43. Mourao-Miranda J, 2011, NEUROIMAGE, V58, P793, DOI 10.1016/j.neuroimage.2011.06.042
  44. Nakamae T, 2012, PROG NEURO-PSYCHOPH, V37, P90, DOI 10.1016/j.pnpbp.2012.01.001
  45. Orru G, 2012, NEUROSCI BIOBEHAV R, V36, P1140, DOI 10.1016/j.neubiorev.2012.01.004
  46. Parrado-Hernandez E, 2014, MED IMAGE ANAL, V18, P435, DOI 10.1016/j.media.2014.01.006
  47. Pauls DL, 2014, NAT REV NEUROSCI, V15, P410, DOI 10.1038/nrn3746
  48. Penades R, 2007, EUR PSYCHIAT, V22, P404, DOI 10.1016/j.eurpsy.2006.05.001
  49. Pereira F, 2009, NEUROIMAGE, V45, pS199, DOI 10.1016/j.neuroimage.2008.11.007
  50. Piras F, 2015, CORTEX, V62, P89, DOI 10.1016/j.cortex.2013.01.016
  51. R Core Team, 2011, R LANG ENV STAT COMP
  52. Robnik-Sikonja M, 2003, MACH LEARN, V53, P23, DOI 10.1023/A:1025667309714
  53. Sidtis JJ, 2003, NEUROIMAGE, V20, P615, DOI 10.1016/S1053-8119(03)00349-5
  54. Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002
  55. Soriano-Mas C, 2007, NEUROIMAGE, V35, P1028, DOI 10.1016/j.neuroimage.2007.01.011
  56. Szeszko PR, 2008, AM J PSYCHIAT, V165, P1299, DOI 10.1176/appi.ajp.2008.08010033
  57. Tang WJ, 2015, BEHAV BRAIN RES, V294, P72, DOI 10.1016/j.bbr.2015.07.061
  58. Togao O., 2010, PSYCHIAT RES, V184
  59. Tohka J, 2016, NEUROINFORMATICS, V14, P279, DOI 10.1007/s12021-015-9292-3
  60. van den Heuvel OA, 2009, BRAIN, V132, P853, DOI 10.1093/brain/awn267
  61. Venkatasubramanian G, 2012, J PSYCHIATR RES, V46, P1161, DOI 10.1016/j.jpsychires.2012.06.003
  62. Witten IH, 2011, MOR KAUF D, P1
  63. Yoo SY, 2008, J KOREAN MED SCI, V23, P24, DOI 10.3346/jkms.2008.23.1.24
  64. Yu L., 2003, ICML, V3, P856
  65. Zarei M, 2011, BIOL PSYCHIAT, V70, P1083, DOI 10.1016/j.biopsych.2011.06.032