Age-Related Metabolic Profiles in Cognitively Healthy Elders: Results from a Voxel-Based [F-18]Fluorodeoxyglucose-Positron-Emission Tomography Study with Partial Volume Effects Correction

Carregando...
Imagem de Miniatura
Citações na Scopus
40
Tipo de produção
article
Data de publicação
2011
Editora
AMER SOC NEURORADIOLOGY
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
AMERICAN JOURNAL OF NEURORADIOLOGY, v.32, n.3, p.560-565, 2011
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND AND PURPOSE: Functional brain variability has been scarcely investigated in cognitively healthy elderly subjects, and it is currently debated whether previous findings of regional metabolic variability are artifacts associated with brain atrophy. The primary purpose of this study was to test whether there is regional cerebral age-related hypometabolism specifically in later stages of life. MATERIALS AND METHODS: MR imaging and FDG-PET data were acquired from 55 cognitively healthy elderly subjects, and voxel-based linear correlations between age and GM volume or regional cerebral metabolism were conducted by using SPM5 in images with and without correction for PVE. To investigate sex-specific differences in the pattern of brain aging, we repeated the above voxelwise calculations after dividing our sample by sex. RESULTS: Our analysis revealed 2 large clusters of age-related metabolic decrease in the overall sample, 1 in the left orbitofrontal cortex and the other in the right temporolimbic region, encompassing the hippocampus, the parahippocampal gyrus, and the amygdala. The division of our sample by sex revealed significant sex-specific age-related metabolic decrease in the left temporolimbic region of men and in the left dorsolateral frontal cortex of women. When we applied atrophy correction to our PET data, none of the above-mentioned correlations remained significant. CONCLUSIONS: Our findings suggest that age-related functional brain variability in cognitively healthy elderly individuals is largely secondary to the degree of regional brain atrophy, and the findings provide support to the notion that appropriate PVE correction is a key tool in neuroimaging investigations.
Palavras-chave
Referências
  1. American Psychiatric Association, 1994, DIAGN STAT MAN MENT
  2. Samuraki M, 2007, EUR J NUCL MED MOL I, V34, P1658, DOI 10.1007/s00259-007-0454-x
  3. Quarantelli M, 2004, J NUCL MED, V45, P192
  4. Petit-Taboue MC, 1998, NEUROIMAGE, V7, P176, DOI 10.1006/nimg.1997.0318
  5. Mosconi L, 2008, NEUROBIOL AGING, V29, P676, DOI 10.1016/j.neurobiolaging.2006.12.008
  6. Wilson PWF, 1998, CIRCULATION, V97, P1837
  7. Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BRM.41.4.1149
  8. Kochunov P, 2009, NEUROIMAGE, V45, P17, DOI 10.1016/j.neuroimage.2008.11.010
  9. Yassa MA, 2009, NEUROIMAGE, V44, P319, DOI 10.1016/j.neuroimage.2008.09.016
  10. Klein A, 2009, NEUROIMAGE, V46, P786, DOI 10.1016/j.neuroimage.2008.12.037
  11. Taki Y, 2004, NEUROBIOL AGING, V25, P455, DOI 10.1016/j.neurobiolaging.2003.09.002
  12. Kalpouzos G, 2009, NEUROBIOL AGING, V30, P112, DOI 10.1016/j.neurobiolaging.2007.05.019
  13. Aston JAD, 2002, J CEREBR BLOOD F MET, V22, P1019
  14. Moeller JR, 1996, J CEREBR BLOOD F MET, V16, P385
  15. Fouquet M, 2009, BRAIN, V132, P2058, DOI 10.1093/brain/awp132
  16. MAZZIOTTA JC, 1995, NEUROIMAGE, V2, P89, DOI 10.1006/nimg.1995.1012
  17. Mosconi L, 2006, J NUCL MED, V47, P1778
  18. Fujimoto T, 2008, PSYCHIAT RES-NEUROIM, V164, P58, DOI 10.1016/j.pscychresns.2006.12.014
  19. Razay G, 2007, ARCH NEUROL-CHICAGO, V64, P93, DOI 10.1001/archneur.64.1.93
  20. Yanase D, 2005, EUR J NUCL MED MOL I, V32, P794, DOI 10.1007/s00259-005-1767-2
  21. Copeland JRM, 2002, INT J GERIATR PSYCH, V17, P729, DOI 10.1002/gps.667
  22. Ibanez V, 1998, NEUROLOGY, V50, P1585
  23. Scazufca M, 2008, INT PSYCHOGERIATR, V20, P394, DOI 10.1017/S1041610207005625
  24. Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
  25. Townsend DW, 2008, SEMIN NUCL MED, V38, P152, DOI 10.1053/j.semnuclmed.2008.01.003
  26. Small GW, 2008, LANCET NEUROL, V7, P161, DOI 10.1016/S1474-4422(08)70019-X
  27. Mevel K, 2007, NEUROIMAGE, V37, P18, DOI 10.1016/j.neuroimage.2007.04.048
  28. Curiati PK, 2009, AM J NEURORADIOL, V30, P1850, DOI 10.3174/ajnr.A1727
  29. Meltzer CC, 1996, NEUROLOGY, V47, P454
  30. Hall KS, 2000, INT J GERIATR PSYCH, V15, P521, DOI 10.1002/1099-1166(200006)15:6<521::AID-GPS182>3.0.CO;2-F
  31. Scazufca M, 2008, INT J EPIDEMIOL, V37, P721, DOI 10.1093/ije/dym154
  32. Raz N, 2005, CEREB CORTEX, V15, P1676, DOI 10.1093/cercor/bhi044
  33. Kennedy KM, 2009, NEUROBIOL AGING, V30, P1657, DOI 10.1016/j.neurobiolaging.2007.12.020
  34. Meltzer CC, 2000, J NUCL MED, V41, P1842
  35. Ashburner J, 2009, MAGN RESON IMAGING, V27, P1163, DOI 10.1016/j.mri.2009.01.006
  36. DELEON MJ, 1984, J COMPUT ASSIST TOMO, V8, P88, DOI 10.1097/00004728-198402000-00017
  37. DELEON MJ, 1987, NEUROBIOL AGING, V8, P319, DOI 10.1016/0197-4580(87)90070-4
  38. Drzezga A, 2008, NEUROIMAGE, V39, P619, DOI 10.1016/j.neuroimage.2007.09.020
  39. DUARA R, 1983, BRAIN, V106, P761, DOI 10.1093/brain/106.3.761
  40. Friston KJ, 1995, HUMAN BRAIN MAPPING, V2, P189, DOI 10.1002/HBM.460020402
  41. Ganguli M, 1996, Int Psychogeriatr, V8, P507, DOI 10.1017/S1041610296002852
  42. HAMILTON M, 1967, BRIT J SOC CLIN PSYC, V6, P278
  43. Inoue K, 2005, ANN NUCL MED, V19, P283, DOI 10.1007/BF02984620
  44. Prince M, 2007, BMC PUBLIC HEALTH, V7, DOI 10.1186/1471-2458-7-165
  45. RAPOPORT SI, 1984, PSYCHOPHARMACOL BULL, V20, P466
  46. Reiman EM, 2010, NEUROIMAGE, V49, P169, DOI 10.1016/j.neuroimage.2009.07.025
  47. Rimajova M, 2008, J ALZHEIMERS DIS, V13, P137
  48. SCHLAGETER NL, 1987, J NEUROL NEUROSUR PS, V50, P779, DOI 10.1136/jnnp.50.6.779
  49. TALAIRACH J, 1998, COPLANNER STEREOTAXI
  50. Willis MW, 2002, PSYCHIAT RES-NEUROIM, V114, P23, DOI 10.1016/S0925-4927(01)00126-3