An MLSA-based online scheme for the rapid identification of Stenotrophomonas isolates

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2011
Editora
FUNDACO OSWALDO CRUZ
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
TRAPPEN, Stefanie Van
SWINGS, Jean
VOS, Paul De
BARBOSA, Heloiza Ramos
THOMPSON, Cristiane Carneiro
VASCONCELOS, Ana Tereza Ribeiro
THOMPSON, Fabiano Lopes
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
MEMORIAS DO INSTITUTO OSWALDO CRUZ, v.106, n.4, p.394-399, 2011
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
An online scheme to assign Stenotrophomonas isolates to genomic groups was developed using the multilocus sequence analysis (MLSA), which is based on the DNA sequencing of selected fragments of the housekeeping genes ATP synthase alpha subunit (atpA), the recombination repair protein (recA), the RNA polymerase alpha subunit (rpoA) and the excision repair beta subunit (uvrB). This MLSA-based scheme was validated using eight of the 10 Stenotrophomonas species that have been previously described. The environmental and nosocomial Stenotrophomonas strains were characterised using MLSA, 16S rRNA sequencing and DNA-DNA hybridisation (DDH) analyses. Strains of the same species were found to have greater than 95% concatenated sequence similarity and specific strains formed cohesive readily recognisable phylogenetic groups. Therefore, MLSA appeared to be an effective alternative methodology to amplified fragment length polymorphism fingerprint and DDH techniques. Strains of Stenotrophomonas can be readily assigned through the open database resource that was developed in the current study (www.steno.lncc.br/).
Palavras-chave
Stenotrophomonas, MLSA, online scheme
Referências
  1. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
  2. Crossman LC, 2008, GENOME BIOL, V9, DOI 10.1186/gb-2008-9-4-r74
  3. Minkwitz A, 2001, J CLIN MICROBIOL, V39, P139, DOI 10.1128/JCM.39.1.139-145.2001
  4. Turner KME, 2007, INT J ANTIMICROB AG, V29, P129, DOI 10.1016/j.ijantimicag.2006.11.002
  5. Finkmann W, 2000, INT J SYST EVOL MICR, V50, P273
  6. Hanage WP, 2006, PHILOS T R SOC B, V361, P1917, DOI 10.1098/rstb.2006.1917
  7. PALLERONI NJ, 1993, INT J SYST BACTERIOL, V43, P606
  8. Naser SM, 2005, MICROBIOL-SGM, V151, P2141, DOI 10.1099/mic.0.27840-0
  9. Sanchez MB, 2009, FUTURE MICROBIOL, V4, P655, DOI [10.2217/fmb.09.45, 10.2217/FMB.09.45]
  10. Thompson FL, 2005, APPL ENVIRON MICROB, V71, P5107, DOI 10.1128/AEM.71.9.5107-5115.2005
  11. Araoka H, 2010, EUR J CLIN MICROBIOL, V29, P605, DOI 10.1007/s10096-010-0882-6
  12. Juhasz AL, 2000, J APPL MICROBIOL, V89, P642, DOI 10.1046/j.1365-2672.2000.01161.x
  13. Jolley KA, 2001, BIOINFORMATICS, V17, P1230, DOI 10.1093/bioinformatics/17.12.1230
  14. Willems A, 2001, INT J SYST EVOL MICR, V51, P1315
  15. Vega FE, 2005, J BASIC MICROB, V45, P371, DOI 10.1002/jobm.200410551
  16. Assih EA, 2002, INT J SYST EVOL MICR, V52, P559, DOI 10.1099/ijs.0.01869-0
  17. Nicodemo AC, 2007, EUR J CLIN MICROBIOL, V26, P229, DOI 10.1007/s10096-007-0279-3
  18. Brady C, 2008, SYST APPL MICROBIOL, V31, P447, DOI 10.1016/j.syapm.2008.09.004
  19. Ryan RP, 2009, NAT REV MICROBIOL, V7, P514, DOI 10.1038/nrmicro2163
  20. Ramos PL, 2011, INT J SYST EVOL MICR, V61, P926, DOI 10.1099/ijs.0.019372-0
  21. Wolf A, 2002, INT J SYST EVOL MICR, V52, P1937, DOI 10.1099/ijs.0.02135-0
  22. Maiden MCJ, 1998, P NATL ACAD SCI USA, V95, P3140, DOI 10.1073/pnas.95.6.3140
  23. Huson DH, 1998, BIOINFORMATICS, V14, P68, DOI 10.1093/bioinformatics/14.1.68
  24. Bishop CJ, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-3
  25. Coenye T, 2004, FEMS IMMUNOL MED MIC, V40, P181, DOI 10.1016/S0928-8244(03)00307-9
  26. Coenye T, 2004, INT J SYST EVOL MICR, V54, P1235, DOI 10.1099/ijs.0.63093-0
  27. Drancourt M, 1997, INT J SYST BACTERIOL, V47, P160
  28. EZAKI B, 1989, MOL GEN GENET, V218, P183, DOI 10.1007/BF00331267
  29. Falagas ME, 2008, J ANTIMICROB CHEMOTH, V62, P889, DOI 10.1093/jac/dkn301
  30. Hauben L, 1999, INT J SYST BACTERIOL, V49, P1749
  31. Heylen K, 2007, INT J SYST EVOL MICR, V57, P2056, DOI 10.1099/ijs.0.65044-0
  32. Kaparullina E, 2009, SYST APPL MICROBIOL, V32, P157, DOI 10.1016/j.syapm.2008.12.003
  33. Kim HB, 2010, INT J SYST EVOL MICR, V60, P1522, DOI 10.1099/ijs.0.014662-0
  34. Nyc O, 2010, FOLIA MICROBIOL, V55, P286, DOI 10.1007/s12223-010-0043-4
  35. SAITOU N, 1987, MOL BIOL EVOL, V4, P406
  36. WAYNE LG, 1987, INT J SYST BACTERIOL, V37, P463
  37. Yang HC, 2006, INT J SYST EVOL MICR, V56, P81, DOI 10.1099/ijs.0.63826-0