MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats

Carregando...
Imagem de Miniatura
Citações na Scopus
156
Tipo de produção
article
Data de publicação
2011
Editora
AMER PHYSIOLOGICAL SOC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
SOCI, U. P. R.
FERNANDES, T.
HASHIMOTO, N. Y.
MOTA, G. F.
AMADEU, M. A.
ROSA, K. T.
PHILLIPS, M. I.
OLIVEIRA, E. M.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PHYSIOLOGICAL GENOMICS, v.43, n.11, p.665-673, 2011
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics 43: 665-673, 2011. First published March 29, 2011; doi:10.1152/physiolgenomics.00145.2010.-MiRNAs regulate cardiac development, hypertrophy, and angiogenesis, but their role in cardiac hypertrophy (CH) induced by aerobic training has not previously been studied. Aerobic training promotes physiological CH preserving cardiac function. This study assessed involvement of miRNAs-29 in CH of trained rats. Female Wistar rats (n = 7/group) were randomized into three groups: sedentary (S), training 1 (T1), training 2 (T2). T1: swimming sessions of 60 min/5 days/wk/10 wk. T2: similar to T1 until 8th wk. On the 9th wk rats swam 2x/day, and on the 10th wk 3x/day. MiRNAs analysis was performed by miRNA microarray and confirmed by real-time PCR. We assessed: markers of training, CH by ratio of left ventricle (LV) weight/body wt and cardiomyocytes diameter, pathological markers of CH (ANF, skeletal alpha-actin, alpha/beta-MHC), collagen I and III (COLIAI and COLIIIAI) by real-time PCR, protein collagen by hydroxyproline (OH-proline) concentration, CF and CH by echocardiography. Training improved aerobic capacity and induced CH. MiRNAs-1, 133a, and 133b were downregulated as observed in pathological CH, however, without pathological markers. MiRNA-29c expression increased in T1 (52%) and T2 (123%), correlated with a decrease in COLIAI and COLIIIAI expression in T1 (27%, 38%) and T2 (33%, 48%), respectively. MiRNA-29c was inversely correlated to OH-proline concentration (r = 0.61, P = 0.05). The E/A ratio increased in T2, indicating improved LV compliance. Thus, these results show that aerobic training increase miR-29 expression and decreased collagen gene expression and concentration in the heart, which is relevant to the improved LV compliance and beneficial cardiac effects, associated with aerobic high performance training.
Palavras-chave
cardiac hypertrophy, collagen, molecular markers, swimming training, physiological cardiac hypertrophy, diastolic function
Referências
  1. Catalucci D, 2009, CIRC-CARDIOVASC GENE, V2, P402, DOI 10.1161/CIRCGENETICS.109.857425
  2. BERGMAN I, 1970, ANAL CHEM, V42, P702, DOI 10.1021/ac60289a036
  3. van Rooij E, 2007, SCIENCE, V316, P575, DOI 10.1126/science.1139089
  4. van Rooij E, 2006, P NATL ACAD SCI USA, V103, P18255, DOI 10.1073/pnas.0608791103
  5. Medeiros A, 2004, BRAZ J MED BIOL RES, V37, P1909, DOI 10.1590/S0100-879X2004001200018
  6. Maurer B, 2010, ARTHRITIS RHEUM-US, V62, P1733, DOI 10.1002/art.27443
  7. DeBosch B, 2006, CIRCULATION, V113, P2097, DOI 10.1161/CIRCULATIONAHA.105.595231
  8. Vollaard NBJ, 2009, J APPL PHYSIOL, V106, P1479, DOI 10.1152/japplphysiol.91453.2008
  9. Drummond MJ, 2008, AM J PHYSIOL-ENDOC M, V295, pE1333, DOI 10.1152/ajpendo.90562.2008
  10. van Rooij E, 2008, P NATL ACAD SCI USA, V105, P13027, DOI 10.1073/pnas.0805038105
  11. Kemi OJ, 2008, J CELL PHYSIOL, V214, P316, DOI 10.1002/jcp.21197
  12. Chen CH, 2009, J HAND SURG-AM, V34A, P1777, DOI 10.1016/j.jhsa.2009.07.015
  13. Zhao Y, 2005, NATURE, V436, P214, DOI 10.1038/nature03817
  14. IZUMO S, 1988, P NATL ACAD SCI USA, V85, P339, DOI 10.1073/pnas.85.2.339
  15. Latronico MVG, 2009, NAT REV CARDIOL, V6, P418, DOI 10.1038/nrcardio.2009.56
  16. Du B, 2010, FEBS LETT, V584, P811, DOI 10.1016/j.febslet.2009.12.053
  17. Kim VN, 2005, NAT REV MOL CELL BIO, V6, P376, DOI 10.1038/nrm1644
  18. McMullen JR, 2007, P NATL ACAD SCI USA, V104, P612, DOI 10.1073/pnas.0606663104
  19. van Rooij E, 2008, CIRC RES, V103, P919, DOI 10.1161/CIRCRESAHA.108.183426
  20. CHIEN KR, 1991, FASEB J, V5, P3037
  21. SAHN DJ, 1978, CIRCULATION, V58, P1072
  22. Heineke J, 2006, NAT REV MOL CELL BIO, V7, P589, DOI 10.1038/nrm1983
  23. WEBER KT, 1991, CIRCULATION, V83, P1849
  24. Takaya T, 2009, CIRC J, V73, P1492
  25. Liu N, 2008, GENE DEV, V22, P3242, DOI 10.1101/gad.1738708
  26. Sayed D, 2007, CIRC RES, V100, P416, DOI 10.1161/01.RES.0000257913.42552.23
  27. Van Rooij E, 2007, J CLIN INVEST, V117, P2369, DOI 10.1172/JC133099
  28. McMullen JR, 2003, P NATL ACAD SCI USA, V100, P12355, DOI 10.1073/pnas.1934654100
  29. Evangelista FS, 2003, BRAZ J MED BIOL RES, V36, P1751, DOI 10.1590/S0100-879X2003001200018
  30. Crimi E, 2009, NAT REV CARDIOL, V6, P292, DOI 10.1038/nrcardio.2009.8
  31. Luo J, 2005, MOL CELL BIOL, V25, P9491, DOI 10.1128/MCB.25.21.9491-9502.2005
  32. Ferreira JCB, 2007, CLIN EXP PHARMACOL P, V34, P760, DOI 10.1111/j.1440-1681.2007.04635.x
  33. Oliveira EM, 2009, J RENIN-ANGIO-ALDO S, V10, P15, DOI 10.1177/1470320309102304
  34. Care A, 2007, NAT MED, V13, P613, DOI 10.1038/nm1582
  35. McMullen JR, 2007, CLIN EXP PHARMACOL P, V34, P255, DOI 10.1111/j.1440-1681.2007.04585.x
  36. CHIEN KR, 1993, ANNU REV PHYSIOL, V55, P77, DOI 10.1146/annurev.physiol.55.1.77
  37. GUNJASMITH Z, 1989, MATRIX, V9, P21
  38. Iemitsu M, 2001, AM J PHYSIOL-REG I, V281, pR2029
  39. Srere P A, 1968, Biochem Soc Symp, V27, P11
  40. Urhausen A, 1999, SPORTS MED, V28, P237, DOI 10.2165/00007256-199928040-00002