Potent Plasmablast-Derived Antibodies Elicited by the National Institutes of Health Dengue Vaccine

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER SOC MICROBIOLOGY
Autores
MAGNANI, Diogo M.
RICCIARDI, Michael J.
GONZALEZ-NIETO, Lucas
PEDRENO-LOPEZ, Nuria
BAILEY, Varian K.
GUTMAN, Martin J.
MAXWELL, Helen S.
DOMINGUES, Aline
Citação
JOURNAL OF VIROLOGY, v.91, n.22, article ID UNSP e00867-17, 12p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Exposure to dengue virus (DENV) is thought to elicit lifelong immunity, mediated by DENV-neutralizing antibodies (nAbs). However, Abs generated by primary infections confer serotype-specific protection, and immunity against other serotypes develops only after subsequent infections. Accordingly, the induction of these nAb responses acquired after serial DENV infections has been a long-sought-after goal for vaccination. Nonetheless, it is still unclear if tetravalent vaccines can elicit or recall nAbs. In this study, we have characterized the responses from a volunteer who had been previously exposed to DENV and was immunized with the live attenuated tetravalent vaccine Butantan-DV, developed by the NIH and Butantan Institute. Eleven days after vaccination, we observed an similar to 70-fold expansion of the plasmablast population. We generated 21 monoclonal Abs (MAbs) from singly sorted plasmablasts. These MAbs were the result of clonal expansions and had significant levels of somatic hypermutation (SHM). Nineteen MAbs (90.5%) neutralized at least one DENV serotype at concentrations of 1 mu g/ml or less; 6 of the 21 MAbs neutralized three or more serotypes. Despite the tetravalent composition of the vaccine, we observed a neutralization bias in the induced repertoire: DENV3 was targeted by 18 of the 19 neutralizing MAbs (nMAbs). Furthermore, the P3D05 nMAb neutralized DENV3 with extraordinary potency (concentration to achieve half-maximal neutralization [Neut(50)] = 0.03 mu g/ml). Thus, the Butantan-DV vaccine engendered a mature, antigen-selected B cell repertoire. Our results suggest that preexisting responses elicited by a previous DENV3 infection were recalled by immunization. IMPORTANCE The dengue epidemic presents a global public health challenge that causes widespread economic burden and remains largely unchecked by existing control strategies. Successful control of the dengue epidemic will require effective prophylactic and therapeutic interventions. Several vaccine clinical efficacy trials are approaching completion, and the chances that one or more live attenuated tetravalent vaccines (LATVs) will be introduced worldwide is higher than ever. While it is widely accepted that dengue virus (DENV)-neutralizing antibody (nAb) titers are associated with protection, the Ab repertoire induced by LATVs remain uncharacterized. Here, we describe the isolation of potent (Neut(50) < 0.1 mu g/ml) nAbs from a DENV-seropositive volunteer immunized with the tetravalent vaccine Butantan-DV, which is currently in phase III trials.
Palavras-chave
B cell, Butantan-DV, TV003, dengue, monoclonal antibodies, plasmablast, vaccines
Referências
  1. Acosta EG, 2016, EXPERT REV VACCINES, V15, P467, DOI 10.1586/14760584.2016.1121814
  2. Avnir Y, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004103
  3. Beltramello M, 2010, CELL HOST MICROBE, V8, P271, DOI 10.1016/j.chom.2010.08.007
  4. Bhatt S, 2013, NATURE, V496, P504, DOI 10.1038/nature12060
  5. Brien JD, 2013, CURR PROTOC MICROBIO, V31, DOI 10.1002/9780471729259.MC15D03S31
  6. Brochet X, 2008, NUCLEIC ACIDS RES, V36, pW503, DOI 10.1093/nar/gkn316
  7. Chan CH, 2001, BLOOD, V97, P1023, DOI 10.1182/blood.V97.4.1023
  8. de Alwis R, 2014, METHODS MOL BIOL, V1138, P27, DOI 10.1007/978-1-4939-0348-1_3
  9. de Alwis R, 2012, P NATL ACAD SCI USA, V109, P7439, DOI 10.1073/pnas.1200566109
  10. de Alwis R, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001188
  11. Dejnirattisai W, 2015, NAT IMMUNOL, V16, P170, DOI 10.1038/ni.3058
  12. Dejnirattisai W, 2010, SCIENCE, V328, P745, DOI 10.1126/science.1185181
  13. Deng YQ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016059
  14. Durbin AP, 2013, J INFECT DIS, V207, P957, DOI 10.1093/infdis/jis936
  15. Fibriansah G, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7341
  16. Fink K, 2012, FRONT IMMUNOL, V3, DOI 10.3389/fimmu.2012.00078
  17. Friberg H, 2012, VIRAL IMMUNOL, V25, P348, DOI 10.1089/vim.2012.0010
  18. Garcia-Bates TM, 2013, J IMMUNOL, V190, P80, DOI 10.4049/jimmunol.1103350
  19. Godoy-Lozano EE, 2016, GENOME MED, V8, DOI 10.1186/s13073-016-0276-1
  20. Guy B, 2015, VACCINE, V33, P7100, DOI 10.1016/j.vaccine.2015.09.108
  21. Hadinegoro SR, 2015, NEW ENGL J MED, V373, P1195, DOI 10.1056/NEJMoa1506223
  22. Halliley JL, 2010, VACCINE, V28, P3582, DOI 10.1016/j.vaccine.2010.02.088
  23. HALSTEAD SB, 1970, YALE J BIOL MED, V42, P311
  24. Halstead SB, 2003, ADV VIRUS RES, V60, P421, DOI 10.1016/S0065-3527(03)60011-4
  25. Halstead SB, 2016, VACCINE, V34, P1643, DOI 10.1016/j.vaccine.2016.02.004
  26. Halstead SB, 2013, VACCINE, V31, P4501, DOI 10.1016/j.vaccine.2013.06.079
  27. Halstead SB, 2012, LANCET, V380, P1535, DOI 10.1016/S0140-6736(12)61510-4
  28. Katzelnick LC, 2016, P NATL ACAD SCI USA, V113, P728, DOI 10.1073/pnas.1522136113
  29. Kirkpatrick BD, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aaf1517
  30. Kraus AA, 2007, J CLIN MICROBIOL, V45, P3777, DOI 10.1128/JCM.00827-07
  31. Kwissa M, 2014, CELL HOST MICROBE, V16, P115, DOI 10.1016/j.chom.2014.06.001
  32. Li GM, 2012, P NATL ACAD SCI USA, V109, P9047, DOI 10.1073/pnas.1118979109
  33. Nishiura H, 2007, J INFECT DIS, V195, P1007, DOI 10.1086/511825
  34. Osorio JE, 2016, EXPERT REV VACCINES, V15, P497, DOI 10.1586/14760584.2016.1128328
  35. Priyamvada L, 2016, J VIROL, V90, P5574, DOI 10.1128/JVI.03203-15
  36. Sabchareon A, 2012, LANCET, V380, P1559, DOI 10.1016/S0140-6736(12)61428-7
  37. Smith DP, 2013, MBIO, V4, DOI 10.1128/mBio.00133-12
  38. Smith SA, 2013, J INFECT DIS, V207, P1898, DOI 10.1093/infdis/jit119
  39. Smith SA, 2012, J VIROL, V86, P2665, DOI 10.1128/JVI.06335-11
  40. Srikiatkhachorn A, 2016, EXPERT REV VACCINES, V15, P455, DOI 10.1586/14760584.2016.1116949
  41. Swaminathan S, 2013, LANCET INFECT DIS, V13, P191, DOI 10.1016/S1473-3099(13)70028-8
  42. Tiller T, 2008, J IMMUNOL METHODS, V329, P112, DOI 10.1016/j.jim.2007.09.017
  43. Tsai WY, 2013, J VIROL, V87, P12562, DOI 10.1128/JVI.00871-13
  44. Victora GD, 2012, ANNU REV IMMUNOL, V30, P429, DOI 10.1146/annurev-immunol-020711-075032
  45. Whitehead SS, 2016, EXPERT REV VACCINES, V15, P509, DOI 10.1586/14760584.2016.1115727
  46. Wilder-Smith A, 2016, EXPERT REV VACCINES, V15, P437, DOI 10.1586/14760584.2016.1143366
  47. Wrammert J, 2012, J VIROL, V86, P2911, DOI 10.1128/JVI.06075-11
  48. Xu MH, 2012, J IMMUNOL, V189, P5877, DOI 10.4049/jimmunol.1201688