Textured insoles affect the plantar pressure distribution while elite rowers perform on an indoor rowing machine

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2017
Editora
PUBLIC LIBRARY SCIENCE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
VIEIRA, Taian
BOTTER, Alberto
GASTALDI, Laura
MARTELLI, Francesco
GIACOMOZZI, Claudia
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PLOS ONE, v.12, n.11, article ID e0187202, 14p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction During rowing, foot positioning on the foot stretcher is critical to optimise muscle force transmission and boat propulsion. Following the beneficial effects of textured insoles on gait and balance, this study aims at investigating whether passive stimulation of foot mechanoreceptors induced by these insoles may contribute to improving foot loading pattern and symmetry during indoor rowing. Methods Eleven elite rowers were assessed during controlled training on a standard rowing machine while wearing control, low-density or high-density textured insoles. Plantar pressure and knee and trunk kinematics were measured; performance data were recorded from the machine. Insole effect on kinematic parameters, peak and average values of foot force, contact area and position of centre of pressure was assessed with ANOVA and Bonferroni correction for pair-wise comparisons. Results A main effect was observed for force and contact area, with the high-density insoles providing greatest values (P<0.035). No interaction was observed between side and insole (P>0.190), even though symmetry was higher with high-density insoles. Kinematics (P = 0.800) and rowing performance were not affected by insole type; a consistent though not statistically significant increase in mean travelled distance was observed for denser insoles (P>0.21). Conclusion The high-density textured insoles affected foot loading distribution during indoor rowing. Rowers applied greater foot force and over a greater foot stretcher area with the high-density than the low-density and control insoles. These findings and the methodology applied may be relevant for the understanding and monitoring of rowing performance.
Palavras-chave
Referências
  1. Aruin AS, 2013, EXP BRAIN RES, V231, P201, DOI 10.1007/s00221-013-3685-z
  2. Barrow JD, 2010, AM J PHYS, V78, P728, DOI 10.1119/1.3318808
  3. Baudouin A, 2002, BRIT J SPORT MED, V36, P396, DOI 10.1136/bjsm.36.6.396
  4. Bourgois J, 2000, BRIT J SPORT MED, V34, P213, DOI 10.1136/bjsm.34.3.213
  5. Buckeridge EM, 2015, SCAND J MED SCI SPOR, V25, pe176, DOI 10.1111/sms.12264
  6. Buckeridge EM, 2014, SPORT BIOMECH, V13, P47, DOI 10.1080/14763141.2013.861013
  7. Busch AC, 2009, COMPUT METH PROG BIO, V94, P15, DOI 10.1016/j.cmpb.2008.08.008
  8. Christiansen E, 1997, SCAND J MED SCI SPOR, V7, P49
  9. Cuijpers LS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133527
  10. Dawson B, 2004, BASIC CLIN BIOSTATIS
  11. Elliott B, 2001, SPORT BIOMECH, V1, P1
  12. Evans G, 2016, BRIT J SPORT MED, V50, P266, DOI 10.1136/bjsports-2015-095126
  13. Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BRM.41.4.1149
  14. Fohanno V, 2015, SPORT BIOMECH, V14, P310, DOI 10.1080/14763141.2015.1060252
  15. Giacomozzi C, 2010, GAIT POSTURE, V32, P141, DOI 10.1016/j.gaitpost.2010.03.014
  16. Godi M, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-95
  17. Hase K, 2002, JSME INT J C-MECH SY, V45, P1073, DOI 10.1299/jsmec.45.1073
  18. Hatton AL, 2012, J FOOT ANKLE RES, V5, DOI 10.1186/1757-1146-5-11
  19. Hoch MC, 2012, MED SCI SPORT EXER, V44, P666, DOI 10.1249/MSS.0b013e3182390212
  20. Hurkmans HLP, 2006, GAIT POSTURE, V23, P118, DOI 10.1016/j.gaitpost.2005.05.008
  21. JOHANSSON RS, 1979, J PHYSIOL-LONDON, V286, P283
  22. Kalron A, 2015, PM&R, V7, P17, DOI 10.1016/j.pmrj.2014.08.942
  23. Kennedy PM, 2002, J PHYSIOL-LONDON, V538, P995, DOI 10.1013/jphysiol.2001.013087
  24. Lebel K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118361
  25. Longman D, 2011, INT J SPORTS MED, V32, P606, DOI 10.1055/s-0031-1275301
  26. Ma CC, 2016, GAIT POSTURE, V49, P190, DOI 10.1016/j.gaitpost.2016.07.010
  27. Maurer M, 2011, AM J SPORT MED, V39, P392, DOI 10.1177/0363546510381365
  28. McGregor AH, 2004, INT J SPORTS MED, V25, P465, DOI 10.1055/s-2004-820936
  29. Qiu F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083309
  30. Qu XD, 2015, APPL ERGON, V46, P38, DOI 10.1016/j.apergo.2014.06.005
  31. Readi NG, 2015, J MED SCI SPORT, V25
  32. Ritchie C, 2011, GAIT POSTURE, V33, P576, DOI 10.1016/j.gaitpost.2011.01.012
  33. Schaffert N, 2015, J SPORT SCI, V33, P411, DOI 10.1080/02640414.2014.946438
  34. Smith RM, 2002, J SPORT SCI, V20, P783, DOI 10.1080/026404102320675639
  35. Smith TB, 2011, MED SCI SPORT EXER, V43, P2155, DOI 10.1249/MSS.0b013e31821d3f8e
  36. Smoljanovic T, 2009, AM J SPORT MED, V37, P1193, DOI 10.1177/0363546508331205
  37. Soper C, 2004, SPORTS MED, V34, P825, DOI 10.2165/00007256-200434120-00003
  38. Stutchfield BM, 2006, EUR J SPORT SCI, V6, P255, DOI 10.1080/17461390601012678
  39. van Soest AJK, 2016, J SPORTS SCI, P1
  40. Waddington G, 2003, BRIT J SPORT MED, V37, P170, DOI 10.1136/bjsm.37.2.170
  41. Waddington G, 2000, TEXTURED INSOLE EFFE
  42. WATANABE I, 1981, ANN NY ACAD SCI, V374, P855, DOI 10.1111/j.1749-6632.1981.tb30926.x