Tissue Uptake Mechanisms Involved in the Clearance of Non-Protein Nanoparticles that Mimic LDL Composition: A Study with Knockout and Transgenic Mice

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2017
Editora
SPRINGER HEIDELBERG
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
FOTAKIS, Panagiotis
MESQUITA, Carlos H.
ZANNIS, Vassilis I.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
LIPIDS, v.52, n.12, p.991-998, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Lipid core nanoparticles (LDE) resembling LDL behave similarly to native LDL when injected in animals or subjects. In contact with plasma, LDE acquires apolipoproteins (apo) E, A-I and C and bind to LDL receptors. LDE can be used to explore LDL metabolism or as a vehicle of drugs directed against tumoral or atherosclerotic sites. The aim was to investigate in knockout (KO) and transgenic mice the plasma clearance and tissue uptake of LDE labeled with H-3-cholesteryl ether. LDE clearance was lower in LDLR KO and apoE KO mice than in wild type (WT) mice (p < 0.05). However, infusion of human apoE3 into the apoE KO mice increased LDE clearance. LDE clearance was higher in apoA-I KO than in WT. In apoA-I transgenic mice, LDE clearance was lower than in apoA-I KO and than in apoA-I KO infusion with human HDL. Infusion of human HDL into the apoA-I KO mice resulted in higher LDE clearance than in the apoA-I transgenic mice (p < 0.05). In apoA-I KO and apoA-I KO infused human HDL, the liver uptake was greater than in WT animals and apoA-I transgenic animals (p < 0.05). LDE clearance was lower in apoE/A-I KO than in WT. Infusion of human HDL increased LDE clearance in those double KO mice. No difference among the groups in LDE uptake by the tissues occurred. In conclusion, results support LDLR and apoE as the key players for LDE clearance, apoA-I also influences those processes.
Palavras-chave
Lipid nanoparticles, Drug targeting in cancer, Cholesterol and cancer, LDL receptors, Solid lipid nanoparticles, LDL clearance in mice
Referências
  1. Ades A, 2001, GYNECOL ONCOL, V82, P84, DOI 10.1006/gyno.2001.6203
  2. Azevedo CHM, 2005, GYNECOL ONCOL, V97, P178, DOI 10.1016/j.ygyno.2004.12.015
  3. Brundert M, 2005, ARTERIOSCL THROM VAS, V25, P143, DOI 10.1161/01.ATV.0000149381.16166.c6
  4. Bulgarelli A, 2013, CARDIOVASC DRUG THER, V27, P531, DOI 10.1007/s10557-013-6488-3
  5. Chroni A, 2003, J BIOL CHEM, V278, P6719, DOI 10.1074/jbc.M205232200
  6. Daminelli EN, 2016, CARDIOVASC DRUG THER, V30, P433, DOI 10.1007/s10557-016-6675-0
  7. FOLCH J, 1957, J BIOL CHEM, V226, P497
  8. GLASS CK, 1983, J BIOL CHEM, V258, P7161
  9. Graziani SR, 2002, GYNECOL ONCOL, V85, P493, DOI 10.1006/gyno.2002.6654
  10. Hirata RDC, 1999, BBA-MOL CELL BIOL L, V1437, P53, DOI 10.1016/S1388-1981(98)00004-3
  11. HO YK, 1978, BLOOD, V52, P1099
  12. Hungria VTM, 2004, CANCER CHEMOTH PHARM, V53, P51, DOI 10.1007/s00280-003-0692-y
  13. ISHIBASHI S, 1993, J CLIN INVEST, V92, P883, DOI 10.1172/JCI116663
  14. Kent AP, 2011, HEPATIC MED-EVID RES, V3, P29, DOI 10.2147/HMER.S7860
  15. Kypreos KE, 2006, J LIPID RES, V47, P521, DOI 10.1194/jlr.M500322-JLR200
  16. Laccotripe M, 1997, J BIOL CHEM, V272, P17511, DOI 10.1074/jbc.272.28.17511
  17. Leite ACA, 2015, CARDIOVASC DRUG THER, V29, P15, DOI 10.1007/s10557-014-6566-1
  18. Lourenco DD, 2011, J THORAC CARDIOV SUR, V141, P1522, DOI 10.1016/j.jtcvs.2010.08.032
  19. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  20. MAHLEY RW, 1988, SCIENCE, V240, P622, DOI 10.1126/science.3283935
  21. Mangili OC, 2014, ATHEROSCLEROSIS, V233, P319, DOI 10.1016/j.atherosclerosis.2013.12.008
  22. Maranhao RC, 2008, ATHEROSCLEROSIS, V197, P959, DOI 10.1016/j.atherosclerosis.2007.12.051
  23. Maranhao RC, 2017, EXPERT OPIN DRUG DEL, V14, P1217, DOI 10.1080/17425247.2017.1276560
  24. MARANHAO RC, 1994, CANCER RES, V54, P4660
  25. MARANHAO RC, 1993, LIPIDS, V28, P691, DOI 10.1007/BF02535988
  26. Maranhao RC, 1997, LIPIDS, V32, P627, DOI 10.1007/s11745-997-0080-6
  27. Maranhao RC, 2002, CANCER CHEMOTH PHARM, V49, P487, DOI 10.1007/s00280-002-0437-3
  28. MARANHAO RC, 1992, BRAZ J MED BIOL RES, V25, P1003
  29. PITAS RE, 1980, J BIOL CHEM, V255, P5454
  30. Rodrigues DG, 2005, CANCER CHEMOTH PHARM, V55, P565, DOI 10.1007/s00280-004-0930-y
  31. Rodrigues DG, 2002, J PHARM PHARMACOL, V54, P765, DOI 10.1211/0022357021779104
  32. Ruiz J, 2005, J LIPID RES, V46, P1721, DOI 10.1194/jlr.M5000114-JLR200
  33. Segrest JP, 2000, TRENDS CARDIOVAS MED, V10, P246, DOI 10.1016/S1050-1738(00)00078-5
  34. STEIN Y, 1980, FEBS LETT, V111, P104, DOI 10.1016/0014-5793(80)80771-X
  35. Tavares ER, 2011, INT J NANOMED, V6, P2297, DOI 10.2147/IJN.S24048
  36. Teixeira RS, 2004, J PHARM PHARMACOL, V56, P909, DOI 10.1211/0022357023826
  37. Valduga CJ, 2003, J PHARM PHARMACOL, V55, P1615, DOI 10.1211/0022357022232
  38. Zannis VI, 2006, J MOL MED-JMM, V84, P276, DOI 10.1007/s00109-005-0030-4
  39. ZANNIS VI, 1982, J LIPID RES, V23, P911
  40. ZANNIS VI, 1981, AM J HUM GENET, V33, P11