Study of fetal and postnatal morphological development of the brain sulci Laboratory investigation

Carregando...
Imagem de Miniatura
Citações na Scopus
40
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER ASSOC NEUROLOGICAL SURGEONS
Citação
JOURNAL OF NEUROSURGERY-PEDIATRICS, v.11, n.1, p.1-11, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Object. The surface of the developing fetal brain undergoes significant morphological changes during fetal growth. The purpose of this study was to evaluate the morphological development of the brain sulci from the fetal to the early postnatal period. Methods. Two hundred fourteen brain hemispheres from 107 human brain specimens were examined to evaluate the timing of sulcal formation, from its appearance to its complete development. These brains were obtained from cadavers ranging in age from 12 weeks of gestation to 8 months of postnatal life. Results. The order of appearance of the cerebral sulci, and the number and percentages of specimens found in this study were as follows: longitudinal cerebral fissure at 12 weeks (10/10, 100%); callosal sulcus at 12 weeks (10/10, 100%); hippocampal sulcus at 15 weeks (7/10, 70%); lateral sulcus at 17 weeks (20/22, 90.9%); circular insular sulcus at 17 weeks (18/22, 81.8%); olfactory sulcus at 17 weeks (18/22, 81.8%); calcarine sulcus at 17 weeks (14/22, 63.6%); parietooccipital sulcus at 17 weeks (11/22, 50%); cingulate sulcus at 19 weeks (16/20, 80%); central sulcus at 21 weeks (22/38, 57.9%); orbital sulcus at 22 weeks (9/16, 56.2%); lunate sulcus at 24 +/- 2 weeks (12/16, 75%); collateral sulcus at 24 +/- 2 weeks (8/16, 50%); superior frontal sulcus at 25 +/- 2 weeks (5/6, 83.3%); rhinal sulcus at 25 +/- 2 weeks (3/6, 50%); precentral sulcus at 26 +/- 3 weeks (2/4, 50%); postcentral sulcus at 26 +/- 3 weeks (2/4, 50%); superior temporal sulcus at 26 +/- 3 weeks (2/4, 50%); central insular sulcus at 29 +/- 2 weeks (4/4, 100%); intraparietal sulcus at 29 +/- 2 weeks (2/4, 50%); paraolfactory sulcus at 29 +/- 2 weeks (2/4, 50%); inferior frontal sulcus at 30 +/- 3 weeks (2/4, 50%); transverse occipital sulcus at 30 +/- 3 weeks (2/4, 50%); occipitotemporal sulcus at 30 +/- 3 weeks (2/4, 50%); marginal branch of the cingulate sulcus at 30 +/- 3 weeks (2/4, 50%); paracentral sulcus at 30 +/- 3 weeks (2/4, 50%); subparietal sulcus at 30 +/- 3 weeks (2/4, 50%); inferior temporal sulcus at 31 +/- 3 weeks (3/6, 50%); transverse temporal sulcus at 33 +/- 3 weeks (6/8, 75%); and secondary sulcus at 38 +/- 3 weeks (2/4, 50%). Conclusions. The brain is subjected to considerable morphological changes throughout gestation. During fetal brain development the cortex begins to fold in, thereby increasing the cortical surface. All primary sulci are formed during fetal life. The appearance of each sulcus follows a characteristic timing pattern, which may be used as one of the reliable guides pertinent to gestational age and normal fetal development. (http://thejns.org/doi/abs/10.3171/2012.9.PEDS12122)
Palavras-chave
fetus, sulcus, morphogenesis, brain, anatomy, histology, growth, development, gestational age
Referências
  1. Bernard C, 1988, J Radiol, V69, P521
  2. BERRY M, 1965, J ANAT, V99, P691
  3. Boling W, 1999, J NEUROSURG, V91, P903, DOI 10.3171/jns.1999.91.6.0903
  4. Broca P, 1876, REV ANTHR, V5, P193
  5. CHI JG, 1977, ANN NEUROL, V1, P86, DOI 10.1002/ana.410010109
  6. Dooling EC, 1983, DEV HUMAN BRAIN GROW, P94
  7. DOROVINIZIS K, 1977, ARCH PATHOL LAB MED, V101, P192
  8. Duvernoy HM, 1991, HUMAN BRAIN
  9. Encha-Razavi F, 2003, CHILD NERV SYST, V19, P426, DOI 10.1007/s00381-003-0765-6
  10. Finger S., 1994, ORIGINS NEUROSCIENCE
  11. Garel C, 2001, AM J NEURORADIOL, V22, P184
  12. Lan LM, 2000, RADIOLOGY, V215, P205
  13. Larroche J. C., 1966, HUM DEV, P257
  14. LARROCHE JC, 1962, BIOL NEONATORUM, V4, P126
  15. LARROCHE JC, 1981, J NEURORADIOLOGY, V8, P93
  16. Levene MI, 1995, FETAL NEONATAL NEURO
  17. Levine D, 1999, RADIOLOGY, V210, P751
  18. Monteagudo A, 1997, ULTRASOUND OBST GYN, V9, P222, DOI 10.1046/j.1469-0705.1997.09040222.x
  19. NAIDICH TP, 1995, NEUROSURGERY, V36, P517
  20. Nishikuni K, 2006, THESIS U SAO PAULO S
  21. Ono M., 1990, ATLAS CEREBRAL SULCI
  22. Pearce JMS, 2006, EUR NEUROL, V56, P262, DOI 10.1159/000096679
  23. Regis J, 2005, NEUROL MED-CHIR, V45, P1, DOI 10.2176/nmc.45.1
  24. Ribas GC, 2006, REV BRAS PSIQUIATR, V28, P326, DOI 10.1590/S1516-44462006000400015
  25. Ribas GC, 2006, NEUROSURGERY, V59, P177, DOI 10.1227/01.NEU.0000240682.28616.b2
  26. Ribas GC, 2005, THESIS U SAO PAULO S
  27. Ribas GC, 2010, NEUROSURG FOCUS, V28, DOI 10.3171/2009.11.FOCUS09245
  28. Ruoss K, 2001, NEUROPEDIATRICS, V32, P69, DOI 10.1055/s-2001-13871
  29. SARNAT HB, 1981, EVOLUTION NERVOUS SY
  30. Squire LR BF, 2003, FUNDAMENTAL NEUROSCI
  31. Stocker JT, 2001, PEDIAT PATHOLOGY, V2
  32. Tamraz JC, 2000, ATLAS REGIONAL ANATO
  33. Testut L, 1934, TRATADO ANATOMIA HUM
  34. Toi A, 2004, ULTRASOUND OBST GYN, V24, P706, DOI 10.1002/uog.1802
  35. vanderKnaap MS, 1996, RADIOLOGY, V200, P389
  36. Williams PL, 1980, GRAYS ANATOMY
  37. Yasargil MG, 1994, MICRONEUROSURGERY, V4
  38. YASARGIL MG, 1976, J NEUROSURG, V44, P298
  39. Yaşargil M G, 1988, Clin Neurosurg, V34, P42