Discordant congenital Zika syndrome twins show differential in vitro viral susceptibility of neural progenitor cells

Carregando...
Imagem de Miniatura
Citações na Scopus
86
Tipo de produção
article
Data de publicação
2018
Editora
NATURE PUBLISHING GROUP
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
CAIRES JR., Luiz Carlos de
GOULART, Ernesto
MELO, UiraSouto
ARAUJO, Bruno Silva Henrique
ALVIZI, Lucas
SCHANOSKI, Alessandra Soares
OLIVEIRA, Danyllo Felipe de
KOBAYASHI, Gerson Shigeru
GRIESI-OLIVEIRA, Karina
MUSSO, Camila Manso
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
NATURE COMMUNICATIONS, v.9, article ID 475, 11p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Congenital Zika syndrome (CZS) causes early brain development impairment by affecting neural progenitor cells (NPCs). Here, we analyze NPCs from three pairs of dizygotic twins discordant for CZS. We compare by RNA-Seq the NPCs derived from CZS-affected and CZS-unaffected twins. Prior to Zika virus (ZIKV) infection the NPCs from CZS babies show a significantly different gene expression signature of mTOR and Wnt pathway regulators, key to a neurodevelopmental program. Following ZIKV in vitro infection, cells from affected individuals have significantly higher ZIKV replication and reduced cell growth. Whole-exome analysis in 18 affected CZS babies as compared to 5 unaffected twins and 609 controls excludes a monogenic model to explain resistance or increased susceptibility to CZS development. Overall, our results indicate that CZS is not a stochastic event and depends on NPC intrinsic susceptibility, possibly related to oligogenic and/or epigenetic mechanisms.
Palavras-chave
Referências
  1. Amorim JH, 2010, J VIROL METHODS, V167, P186, DOI 10.1016/j.jviromet.2010.04.003
  2. Araujo B. H. S., 2017, MOL NEUROBIOL
  3. Barbier A, 2013, PEDIATRICS, V131, pE1158, DOI 10.1542/peds.2011-3846
  4. Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170
  5. Chimelli L, 2017, ACTA NEUROPATHOL, V133, P983, DOI 10.1007/s00401-017-1699-5
  6. Chun S, 2009, GENOME RES, V19, P1553, DOI 10.1101/gr.092619.109
  7. Cloetta D, 2013, J NEUROSCI, V33, P7799, DOI 10.1523/JNEUROSCI.3294-12.2013
  8. Datan E, 2016, CELL DEATH DIS, V7, DOI 10.1038/cddis.2015.409
  9. del Campo M, 2017, AM J MED GENET A, V173, P841, DOI 10.1002/ajmg.a.38170
  10. Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635
  11. Alves RPD, 2016, CLIN VACCINE IMMUNOL, V23, P460, DOI 10.1128/CVI.00081-16
  12. Edgil D, 2006, J VIROL, V80, P2976, DOI 10.1128/JVI.80.6.2976-2986.2006
  13. Faria NR, 2016, SCIENCE, V352, P345, DOI 10.1126/science.aaf5036
  14. Franca GVA, 2016, LANCET, V388, P891, DOI 10.1016/S0140-6736(16)30902-3
  15. Homem CCF, 2015, NAT REV NEUROSCI, V16, P647, DOI 10.1038/nrn4021
  16. Hou PS, 2013, NUCLEIC ACIDS RES, V41, P7753, DOI 10.1093/nar/gkt567
  17. Huzly D, 2016, EUROSURVEILLANCE, V21, P9, DOI 10.2807/1560-7917.ES.2016.21.16.30203
  18. Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089
  19. Jehee FS, 2011, EUR J MED GENET, V54, pE425, DOI 10.1016/j.ejmg.2011.03.007
  20. Johansson MA, 2016, NEW ENGL J MED, V375, P1, DOI 10.1056/NEJMp1605367
  21. Joubert PE, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1005091
  22. Kassai H, 2014, CELL REP, V7, P1626, DOI 10.1016/j.celrep.2014.04.048
  23. Kortum F, 2011, J MED GENET, V48, P396, DOI 10.1136/jmg.2010.087528
  24. Kumamoto T, 2017, DEV GROWTH DIFFER, V59, P258, DOI 10.1111/dgd.12367
  25. Lanciotti RS, 2008, EMERG INFECT DIS, V14, P1232, DOI 10.3201/eid1408.080287
  26. Lawrence M, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1003118
  27. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  28. Liang QM, 2016, CELL STEM CELL, V19, P663, DOI 10.1016/j.stem.2016.07.019
  29. Marceau CD, 2016, NATURE, V535, P159, DOI 10.1038/nature18631
  30. McGrath EL, 2017, STEM CELL REP, V8, P715, DOI 10.1016/j.stemcr.2017.01.008
  31. McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
  32. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  33. Okita K, 2013, STEM CELLS, V31, P458, DOI 10.1002/stem.1293
  34. Quang D, 2015, BIOINFORMATICS, V31, P761, DOI 10.1093/bioinformatics/btu703
  35. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  36. Robinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616
  37. Savidis G, 2016, CELL REP, V16, P232, DOI 10.1016/j.celrep.2016.06.028
  38. Schuler-Faccini L, 2016, MMWR-MORBID MORTAL W, V65, P59, DOI 10.15585/mmwr.mm6503e2
  39. Sham PC, 2000, AM J HUM GENET, V66, P1616, DOI 10.1086/302891
  40. Tang HL, 2016, CELL STEM CELL, V18, P587, DOI 10.1016/j.stem.2016.02.016
  41. Tripathi S, 2015, CELL HOST MICROBE, V18, P723, DOI 10.1016/j.chom.2015.11.002
  42. Wang K, 2010, NUCLEIC ACIDS RES, V38, pe164, DOI 10.1093/NAR/GKQ603
  43. Werner H, 2016, PRENATAL DIAG, V36, P785, DOI 10.1002/pd.4860
  44. Zhang FR, 2016, NUCLEIC ACIDS RES, V44, P8610, DOI [10.1093/nar/gkw765, 10]
  45. Zhang R, 2016, NATURE, V535, P164, DOI 10.1038/nature18625