Online extraction of antihypertensive drugs and their metabolites from untreated human serum samples using restricted access carbon nanotubes in a column switching liquid chromatography system

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Citação
JOURNAL OF CHROMATOGRAPHY A, v.1528, p.41-52, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
A novel analytical method was developed to determine 5 antihypertensive drugs of different pharmacological classes (angiotensin-converting enzyme inhibitors, calcium channel blockers, alpha-2 adrenergic receptor agonists, angiotensin II receptor blockers, and aldosterone receptor antagonists) and some of their metabolites in human serum. The untreated samples were directly analyzed in a column switching system using an extraction column packed with restricted access carbon nanotubes (RACNTs) in an ultra-high performance liquid chromatography coupled to a mass spectrometer (UHPLC-MS/MS). The RACNTs column was able to exclude approximately 100% of proteins from the samples in 2.0 min, maintaining the same performance for about 300 analytical cycles. The method was validated in accordance with Food and Drug Administration (FDA) guidelines, being linear for all the determined analytes in their respective analytical ranges (coefficients of determination higher than 0.99) with limits of detection (LODs) and quantification (LOQs) ranging from 0.09 to 10.85 mu g L-1 and from 0.30 to 36.17 mu g L-1, respectively. High recovery values (88-112%) were obtained as well as suitable results for inter and intra-assay accuracy and precision. The method provided an analytical frequency of 5 samples per hour, including the sample preparation and separation/detection steps. The validated method was successfully used to analyze human serum samples of patients undergoing treatment with antihypertensive drugs, being useful for pharmacometabolomic, pharmacogenomic, and pharmacokinetic studies.
Palavras-chave
Restricted access carbon nanotubes, Online sample preparation, Restricted access material, Column switching, Antihypertensive drugs, Liquid chromatography-mass spectrometry
Referências
  1. Abdelhameed AS, 2017, BIOMED CHROMATOGR, V31, DOI 10.1002/bmc.3793
  2. Adaway JE, 2012, J CHROMATOGR B, V883, P33, DOI 10.1016/j.jchromb.2011.09.041
  3. Baghdady YZ, 2016, J SEP SCI, V39, P4183, DOI 10.1002/jssc.201600777
  4. Baranowska I, 2010, ANAL SCI, V26, P755, DOI 10.2116/analsci.26.755
  5. Barbosa AF, 2015, TALANTA, V131, P213, DOI 10.1016/j.talanta.2014.07.051
  6. Beinhauer J, 2015, ANAL CHIM ACTA, V858, P74, DOI 10.1016/j.aca.2014.11.032
  7. Bortolotto LA, 2013, ARQ BRAS CARDIOL, V101, pE77, DOI 10.5935/abc.20130194
  8. Brunton LL, 2011, GOODMAN GILMANS PHAR
  9. Calhoun DA, 2014, HYPERTENSION, V63, P451, DOI 10.1161/HYPERTENSIONAHA.113.02026
  10. Cassiano NM, 2006, ANAL BIOANAL CHEM, V384, P1462, DOI 10.1007/s00216-005-0253-9
  11. de Faria HD, 2017, FOOD CHEM, V225, P98, DOI 10.1016/j.foodchem.2017.01.004
  12. de Faria HD, 2017, ANAL CHIM ACTA, V959, P43, DOI 10.1016/j.aca.2016.12.047
  13. de Lima MM, 2016, FOOD CHEM, V197, P7, DOI 10.1016/j.foodchem.2015.10.082
  14. De Nicolo A, 2016, J PHARMACEUT BIOMED, V129, P535, DOI 10.1016/j.jpba.2016.07.049
  15. Domenech M., 2017, MED CLIN BARC
  16. Dong HJ, 2006, J MASS SPECTROM, V41, P477, DOI 10.1002/jms.1006
  17. dos Santos RC, 2017, J CHROMATOGR B, V1054, P50, DOI 10.1016/j.jchromb.2017.02.025
  18. Fagundes VF, 2014, J CHROMATOGR B, V947, P8, DOI 10.1016/j.jchromb.2013.12.002
  19. Fan H, 2014, J SEP SCI, V37, P2010, DOI 10.1002/jssc.201400165
  20. FDA, 2013, GUID IND BIOAN METH
  21. Barbosa FHF, 2017, TALANTA, V167, P538, DOI 10.1016/j.talanta.2017.02.054
  22. Garcia-Ac A, 2009, J ENVIRON MONITOR, V11, P830, DOI 10.1039/b817570e
  23. Gaudl A, 2016, J CHROMATOGR A, V1464, P64, DOI 10.1016/j.chroma.2016.07.087
  24. Gomes R. A. B., 2016, MAT SCI, V740, P7
  25. Gonzalez O, 2010, J CHROMATOGR B, V878, P2685, DOI 10.1016/j.jchromb.2010.07.026
  26. Gouda AA, 2016, FOOD CHEM, V202, P409, DOI 10.1016/j.foodchem.2016.02.006
  27. Han Z, 2017, FOOD CONTROL, V79, P177, DOI 10.1016/j.foodcont.2017.03.044
  28. HERRAEZHERNANDEZ R, 1994, J CHROMATOGR B, V658, P303, DOI 10.1016/0378-4347(94)00241-X
  29. Hoshina K, 2011, J PHARMACEUT BIOMED, V55, P916, DOI 10.1016/j.jpba.2011.03.014
  30. Jafari MT, 2016, J CHROMATOGR A, V1466, P50, DOI 10.1016/j.chroma.2016.09.015
  31. Jankowski A, 1996, J PHARMACEUT BIOMED, V14, P1359, DOI 10.1016/S0731-7085(96)01767-0
  32. Josefsson M, 1996, J PHARMACEUT BIOMED, V15, P267, DOI 10.1016/0731-7085(96)01836-5
  33. Kearney PM, 2005, LANCET, V365, P217, DOI 10.1016/S0140-6736(05)17741-1
  34. Kim BH, 2010, CLIN THER, V32, P193, DOI 10.1016/j.clinthera.2010.01.017
  35. Krieger EM, 2014, CLIN CARDIOL, V37, P1, DOI 10.1002/clc.22228
  36. Lee H, 1996, CHROMATOGRAPHIA, V42, P39, DOI 10.1007/BF02271053
  37. Lv C, 2014, Drug Res (Stuttg), V64, P229, DOI 10.1055/s-0033-1357143
  38. Magiera S, 2014, J SEP SCI, V37, P3314, DOI 10.1002/jssc.201400599
  39. Malta DC, 2016, SAO PAULO MED J, V134, P163, DOI 10.1590/1516-3180.2015.02090911
  40. Mashayekhi HA, 2016, J CHROMATOGR SCI, V54, P1068, DOI 10.1093/chromsci/bmw031
  41. Moen MD, 2005, DRUGS, V65, P2657, DOI 10.2165/00003495-200565180-00012
  42. da Silva KKMS, 2016, J ANAL TOXICOL, V40, P108, DOI 10.1093/jat/bkv121
  43. Neerland BE, 2015, BMC GERIATR, V15, DOI 10.1186/s12877-015-0006-3
  44. Nirogi R, 2008, BIOMED CHROMATOGR, V22, P992, DOI 10.1002/bmc.1018
  45. Papouskova B, 2014, J SEP SCI, V37, P2192, DOI 10.1002/jssc.201400369
  46. Paszkiewicz M, 2017, TALANTA, V165, P405, DOI 10.1016/j.talanta.2016.10.049
  47. Barbosa VMP, 2016, TALANTA, V147, P478, DOI 10.1016/j.talanta.2015.10.023
  48. Plotka-Wasylka J, 2016, TRAC-TREND ANAL CHEM, V77, P23, DOI 10.1016/j.trac.2015.10.010
  49. Poulter NR, 2015, LANCET, V386, P801, DOI 10.1016/S0140-6736(14)61468-9
  50. Prabhakaran Dorairaj, 2017, Indian Heart J, V69, P434, DOI 10.1016/j.ihj.2017.05.021
  51. Ramusovic S, 2012, BIOMED CHROMATOGR, V26, P697, DOI 10.1002/bmc.1716
  52. Santos MG, 2017, TALANTA, V163, P8, DOI 10.1016/j.talanta.2016.10.047
  53. Santos MG, 2015, ANALYST, V140, P2696, DOI 10.1039/c4an02066a
  54. Schulz M, 2012, CRIT CARE, V16, DOI 10.1186/cc11441
  55. Shimizu T, 2014, LANGMUIR, V30, P554, DOI 10.1021/la403361j
  56. Sitko R, 2012, TRAC-TREND ANAL CHEM, V37, P22, DOI 10.1016/j.trac.2012.03.016
  57. Sixto A, 2016, J ANAL ATOM SPECTROM, V31, P473, DOI [10.1039/c5ja00387c, 10.1039/C5JA00387C]
  58. van den Ouweland JMW, 2012, J CHROMATOGR B, V883, P18, DOI 10.1016/j.jchromb.2011.11.044
  59. Vieira AC, 2017, INT J ENVIRON AN CH, V97, P29, DOI 10.1080/03067319.2016.1272679
  60. Yamamoto E, 2011, J CHROMATOGR B, V879, P3620, DOI 10.1016/j.jchromb.2011.10.004
  61. Yang SH, 2013, J SEP SCI, V36, P2922, DOI 10.1002/jssc.201300595
  62. Zhou B, 2017, LANCET, V389, P37, DOI 10.1016/S0140-6736(16)31919-5