ACE-modulated adiposity is related to higher energy expenditure and independent of lipolysis and glucose incorporation into lipids in adipocytes

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Autores
HIGA, Talita Sayuri
FERRAZ-DE-CAMPOS, Tarcila Beatriz
TAKADA, Julie
TORRES-LEAL, Francisco Leonardo
EVANGELISTA, Fabiana Sant'Anna
LIMA, Fabio Bessa
Citação
PHYSIOLOGICAL GENOMICS, v.49, n.12, p.712-721, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Emerging evidence suggests that both systemic and white adipose tissue-renin-angiotensin system components influence body weight control. We previously demonstrated that higher angiotensin-converting enzyme (ACE) gene expression is associated with lower body adiposity in a rodent model. In this study, we tested the hypothesis that a higher ACE gene dosage reduces fat accumulation by increasing energy expenditure and modulating lipolysis and glucose incorporation into lipids in adipocytes. After a 12 wk follow-up period, transgenic mice harboring three ACE (3ACE) gene copies displayed diminished WAT mass, lipid content in their carcasses, adipocyte hypotrophy, and higher resting oxygen uptake (Vo(2) ) in comparison with animals with one ACE gene copy (1ACE) after long fasting (12 h). No differences were found in food intake and in the rates of lipolysis and glucose incorporation into lipids in adipocytes. To assess whether this response involves increased angiotensin II type I receptor (AT1R) activation. AT1R blocker (losartan) was used in a separate group of 3ACE mice with body weight and adiposity comparable to that in the other 3ACE animals. We suggest that fasting-induced lower adiposity observed in animals with 3ACE gene copies might be associated with a higher expense of energy reserves; this response did not involve AT1R activation.
Palavras-chave
ACE gene, adipose tissue, lipogenesis, lipolysis, energy expenditure
Referências
  1. Alves MF, 2005, BRAZ J MED BIOL RES, V38, P861, DOI 10.1590/S0100-879X2005000600007
  2. Bazin R, 2001, ADIPOSE TISSUE PROTO, DOI 10.1385/1-59259-231-7:121
  3. Bergmeyer H. U., 1974, METHODS ENZYMATIC AN
  4. BERNARDIS LL, 1968, J ENDOCRINOL, V40, P527, DOI 10.1677/joe.0.0400527
  5. BONORA E, 1989, J CLIN ENDOCR METAB, V68, P374, DOI 10.1210/jcem-68-2-374
  6. Brandsch C, 2010, LIPIDS HEALTH DIS, V9, DOI 10.1186/1476-511X-9-50
  7. Caron KMI, 2002, P NATL ACAD SCI USA, V99, P8248, DOI 10.1073/pnas.112222199
  8. Coelho MS, 2010, REGUL PEPTIDES, V162, P61, DOI 10.1016/j.regpep.2010.03.008
  9. Frantz ED, 2014, METAB SYNDR RELAT D, V12, P191, DOI 10.1089/met.2013.0129
  10. de Kloet AD, 2011, AM J PHYSIOL-ENDOC M, V301, pE1081, DOI 10.1152/ajpendo.00307.2011
  11. de Kloet AD, 2009, ENDOCRINOLOGY, V150, P4114, DOI 10.1210/en.2009-0065
  12. DiGirolamo M., 2001, ADIPOSE TISSUE PROTO, DOI 10.1385/1-59259-231-7:181
  13. Engeli S, 2005, HYPERTENSION, V45, P356, DOI 10.1161/01.HYP.0000154361.47683.d3
  14. Esther CR, 1996, LAB INVEST, V74, P953
  15. Evangelista FS, 2006, PHYSIOL GENOMICS, V27, P231, DOI 10.1152/physiolgenomics.00022.2006
  16. Favre GA, 2014, J RENIN-ANGIO-ALDO S, V15, P396, DOI 10.1177/1470320314537695
  17. Feldmann HM, 2009, CELL METAB, V9, P203, DOI 10.1016/j.cmet.2008.12.014
  18. Ferre P, 2007, HORM RES, V68, P72, DOI 10.1159/000100426
  19. Fine JB, 1997, INT J OBESITY, V21, P764, DOI 10.1038/sj.ijo.0800469
  20. Fouque D, 2008, KIDNEY INT, V73, P391, DOI 10.1038/sj.ki.5002585
  21. FREDERICH RC, 1995, NAT MED, V1, P1311, DOI 10.1038/nm1295-1311
  22. Goossens GH, 2007, INT J OBESITY, V31, P382, DOI 10.1038/sj.ijo.0803388
  23. Gorzelniak K, 2002, J HYPERTENS, V20, P965, DOI 10.1097/00004872-200205000-00032
  24. Heimann AS, 2005, PHYSIOL GENOMICS, V20, P173, DOI 10.1152/physiolgenomics.00145.2004
  25. Hilgers KF, 1997, HYPERTENSION, V29, P216, DOI 10.1161/01.HYP.29.1.216
  26. Hiraoka J, 1997, BIOCHEM BIOPH RES CO, V231, P582, DOI 10.1006/bbrc.1997.6145
  27. HONNOR RC, 1985, J BIOL CHEM, V260, P5122
  28. Huang W, 2001, P NATL ACAD SCI USA, V98, P13330, DOI 10.1073/pnas.231476798
  29. Janke J, 2002, DIABETES, V51, P1699, DOI 10.2337/diabetes.51.6.1699
  30. Jayasooriya AP, 2008, P NATL ACAD SCI USA, V105, P6531, DOI 10.1073/pnas.0802690105
  31. Jones BH, 1997, ENDOCRINOLOGY, V138, P1512, DOI 10.1210/en.138.4.1512
  32. Karlsson C, 1998, J CLIN ENDOCR METAB, V83, P3925, DOI 10.1210/jc.83.11.3925
  33. KATSUYA T, 1995, ARTERIOSCL THROM VAS, V15, P779, DOI 10.1161/01.ATV.15.6.779
  34. Kim S, 2001, BIOCHEM J, V357, P899, DOI 10.1042/0264-6021:3570899
  35. Krege JH, 1997, HYPERTENSION, V29, P150, DOI 10.1161/01.HYP.29.1.150
  36. KREGE JH, 1995, NATURE, V375, P146, DOI 10.1038/375146a0
  37. Lemes VAF, 2013, GENE, V532, P197, DOI 10.1016/j.gene.2013.09.065
  38. Li B, 2000, NAT MED, V6, P1115
  39. Liao CC, 2013, J AGR FOOD CHEM, V61, P11082, DOI 10.1021/jf4026647
  40. Pelletier CC, 2013, KIDNEY INT, V83, P878, DOI 10.1038/ki.2013.9
  41. Premaratna SD, 2012, INT J OBESITY, V36, P233, DOI 10.1038/ijo.2011.95
  42. Rideout TC, 2010, MOL NUTR FOOD RES, V54, pS7, DOI 10.1002/mnfr.201000027
  43. Riera-Fortuny C, 2005, INT J OBESITY, V29, P78, DOI 10.1038/sj.ijo.0802829
  44. Rodbell M., 1964, J BIOL CHEM, V239, P357
  45. Rogero MM, 2011, NUTRIENTS, V3, P792, DOI 10.3390/nu3090792
  46. Santos EL, 2008, INT IMMUNOPHARMACOL, V8, P247, DOI 10.1016/j.intimp.2007.07.021
  47. Santos EL, 2009, BIOCHEM PHARMACOL, V78, P951, DOI 10.1016/j.bcp.2009.06.018
  48. Silva GJJ, 2006, PHYSIOL GENOMICS, V27, P237, DOI 10.1152/physiolgenomics.00023.2006
  49. Strazzullo P, 2003, ANN INTERN MED, V138, P17, DOI 10.7326/0003-4819-138-1-200301070-00007
  50. van Harmelen V, 2000, OBES RES, V8, P337, DOI 10.1038/oby.2000.40
  51. Wacker MJ, 2008, MED SCI MONITOR, V14, pCR353
  52. Weisinger RS, 2009, PHYSIOL BEHAV, V98, P192, DOI 10.1016/j.physbeh.2009.05.009