Patients with a Kabuki syndrome phenotype demonstrate DNA methylation abnormalities

Carregando...
Imagem de Miniatura
Citações na Scopus
46
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
SOBREIRA, Nara
BRUCATO, Martha
ZHANG, Li
LADD-ACOSTA, Christine
ONGACO, Chrissie
ROMM, Jane
DOHENY, Kimberly F.
MINGRONI-NETTO, Regina C.
Citação
EUROPEAN JOURNAL OF HUMAN GENETICS, v.25, n.12, p.1335-1344, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Kabuki syndrome is a monogenic disorder caused by loss of function variants in either of two genes encoding histone-modifying enzymes. We performed targeted sequencing in a cohort of 27 probands with a clinical diagnosis of Kabuki syndrome. Of these, 12 had causative variants in the two known Kabuki syndrome genes. In 2, we identified presumptive loss of function de novo variants in KMT2A (missense and splice site variants), a gene that encodes another histone modifying enzyme previously exclusively associated with Wiedermann-Steiner syndrome. Although Kabuki syndrome is a disorder of histone modification, we also find alterations in DNA methylation among individuals with a Kabuki syndrome diagnosis relative to matched normal controls, regardless of whether they carry a variant in KMT2A or KMT2D or not. Furthermore, we observed characteristic global abnormalities of DNA methylation that distinguished patients with a loss of function variant in KMT2D or missense or splice site variants in either KMT2D or KMT2A from normal controls. Our results provide new insights into the relationship of genotype to epigenotype and phenotype and indicate cross-talk between histone and DNA methylation machineries exposed by inborn errors of the epigenetic apparatus.
Palavras-chave
Referências
  1. Adam MP, 2005, CLIN GENET, V67, P209, DOI 10.1111/j.1399-0004.2004.00348.x
  2. Altshuler DM, 2012, NATURE, V491, P56, DOI 10.1038/nature11632
  3. Aryee MJ, 2014, BIOINFORMATICS, V30, P1363, DOI 10.1093/bioinformatics/btu049
  4. Barfield RT, 2014, GENET EPIDEMIOL, V38, P231, DOI 10.1002/gepi.21789
  5. Bjornsson HT, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3009278
  6. Bjornsson HT, 2015, GENOME RES, V25, P1473, DOI 10.1101/gr.190629.115
  7. Bogershausen N, 2016, HUM MUTAT, V37, P847, DOI 10.1002/humu.23026
  8. Butcher DT, 2017, AM J HUM GENET, V100, P773, DOI 10.1016/j.ajhg.2017.04.004
  9. Choufani S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10207
  10. Dentici ML, 2015, ARCH DIS CHILD, V100, P158, DOI 10.1136/archdischild-2013-305858
  11. Du P, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-587
  12. Ehrlich M, 2006, ORPHANET J RARE DIS, V1, DOI 10.1186/1750-1172-1-2
  13. Gentleman RC, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-10-r80
  14. Guo CC, 2012, P NATL ACAD SCI USA, V109, P17603, DOI 10.1073/pnas.1208807109
  15. Hamosh A, 2013, HUM MUTAT, V34, P566, DOI 10.1002/humu.22283
  16. Hood RL, 2016, SCI REP, P38803
  17. Houseman EA, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-86
  18. Hu JL, 2009, P NATL ACAD SCI USA, V106, P22187, DOI 10.1073/pnas.0905767106
  19. Jaffe AE, 2012, INT J EPIDEMIOL, V41, P200, DOI 10.1093/ije/dyr238
  20. Jin BL, 2008, HUM MOL GENET, V17, P690, DOI 10.1093/hmg/ddm341
  21. Jones WD, 2012, AM J HUM GENET, V91, P358, DOI 10.1016/j.ajhg.2012.06.008
  22. Li LC, 2002, BIOINFORMATICS, V18, P1427, DOI 10.1093/bioinformatics/18.11.1427
  23. Lindsley AW, 2016, J ALLERGY CLIN IMMUN, V137, P179, DOI 10.1016/j.jaci.2015.06.002
  24. Mendelsohn BA, 2014, AM J MED GENET A, V164, P2079, DOI 10.1002/ajmg.a.36590
  25. Miyake N, 2016, CLIN GENET, V89, P115, DOI 10.1111/cge.12586
  26. Miyake N, 2013, HUM MUTAT, V34, P108, DOI 10.1002/humu.22229
  27. Mo R, 2006, J BIOL CHEM, V281, P15714, DOI 10.1074/jbc.M513245200
  28. Murr R, 2010, ADV GENET, V70, P101, DOI [10.1016/B978-0-12-380866-0.60005-8, 10.1016/S0065-2660(10)70005-5]
  29. Ng SB, 2010, NAT GENET, V42, P790, DOI 10.1038/ng.646
  30. Okitsu CY, 2007, MOL CELL BIOL, V27, P2746, DOI 10.1128/MCB.02291-06
  31. Parenti I, 2017, HUM GENET, V136, P307, DOI 10.1007/s00439-017-1758-y
  32. Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  33. Robinson JT, 2011, NAT BIOTECHNOL, V29, P24, DOI 10.1038/nbt.1754
  34. Sobreira N, 2015, HUM MUTAT, V36, P425, DOI 10.1002/humu.22769
  35. Stellacci E, 2016, AM J MED GENET A, V170, P2389, DOI 10.1002/ajmg.a.37681
  36. Tost J, 2007, NAT PROTOC, V2, P2265, DOI 10.1038/nprot.2007.314
  37. van Nuland R, 2013, MOL CELL BIOL, V33, P2067, DOI 10.1128/MCB.01742-12
  38. Wang J, 2009, NAT GENET, V41, P125, DOI 10.1038/ng.268
  39. Yuan B, 2015, J CLIN INVEST, V125, P636, DOI 10.1172/JCI77435
  40. Zhang JY, 2015, NAT MED, V21, P1190, DOI 10.1038/nm.3940