Adhesive Leaf Created by a Corona Discharge

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
LEE, Wonseok
SON, Jongsang
KIM, Seonghyun
YANG, Dongmin
CHOI, Seungyeop
HWANG, Kyo Seon
LEE, Sang Woo
LEE, Gyudo
YOON, Dae Sung
Citação
SCIENTIFIC REPORTS, v.8, article ID 1737, 8p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Here, we report a new concept of both the adhesive manner and material, named ""adhesive leaf (AL),"" based on the leaf of the plant Heteropanax fragrans. The treatment of the corona discharge on the leaf surface can cause the nano-/microdestruction of the leaf epidermis, resulting in an outward release of sap. The glucose-containing sap provided the AL with a unique ability to stick to various substrates such as steel, polypropylene, and glass. Moreover, we reveal that the AL adhesion strength depends on the AL size, as well as the corona-discharge intensity. Conventional adhesives, such as glue and bond, lose their adhesive property and leave dirty residues upon the removal of the attached material. Unlike the conventional methods, the AL is advantageous as it can be repeatedly attached and detached thoroughly until the sap liquid is exhausted; its adhesive ability is maintained for at least three weeks at room temperature. Our findings shed light on a new concept of a biodegradable adhesive material that is created by a simple surface treatment.
Palavras-chave
Referências
  1. Autumn K, 2002, P NATL ACAD SCI USA, V99, P12252, DOI 10.1073/pnas.192252799
  2. Autumn K, 2000, NATURE, V405, P681
  3. Chinga G, 2007, J MICROSC-OXFORD, V227, P254, DOI 10.1111/j.1365-2818.2007.01809.x
  4. Concha A, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7292
  5. Farris S, 2010, POLYMER, V51, P3591, DOI 10.1016/j.polymer.2010.05.036
  6. Geim AK, 2003, NAT MATER, V2, P461, DOI 10.1038/nmat917
  7. Haubert K, 2006, LAB CHIP, V6, P1548, DOI 10.1039/b610567j
  8. Jensen KH, 2016, REV MOD PHYS, V88, DOI 10.1103/RevModPhys.88.035007
  9. Jeon EY, 2015, BIOMATERIALS, V67, P11, DOI 10.1016/j.biomaterials.2015.07.014
  10. 김원정, 2013, Biomedical Engineering Letters (BMEL), V3, P144, DOI 10.1007/s13534-013-0104-0
  11. LAWSON DF, 1987, RUBBER CHEM TECHNOL, V60, P102, DOI 10.5254/1.3536111
  12. Lee H, 2007, SCIENCE, V318, P426, DOI 10.1126/science.1147241
  13. Lee H, 2007, NATURE, V448, P338, DOI 10.1038/nature05968
  14. Lee H, 2006, P NATL ACAD SCI USA, V103, P12999, DOI 10.1073/pnas.0605552103
  15. Liu K, 2012, J COLLOID INTERF SCI, V365, P289, DOI 10.1016/j.jcis.2011.09.004
  16. Newar J, 2015, LANGMUIR, V31, P12155, DOI 10.1021/acs.langmuir.5b03498
  17. Roth-Nebelsick A, 2001, ANN BOT-LONDON, V87, P553, DOI 10.1006/anbo.2001.1391
  18. Sahni V, 2011, J ADHESION, V87, P595, DOI 10.1080/00218464.2011.583588
  19. Scora P. E., 1991, J ETHNOBIOL, V11, P193
  20. Vincent JFV, 2006, J R SOC INTERFACE, V3, P471, DOI 10.1098/rsif.2006.0127
  21. Wei K, 2014, RSC ADV, V4, P59122, DOI 10.1039/c4ra10732b
  22. Zhu Y, 2006, IEEE T PLASMA SCI, V34, P1094, DOI 10.1109/TPS.2006.876498