FAM3B/PANDER inhibits cell death and increases prostate tumor growth by modulating the expression of Bcl-2 and Bcl-X-L cell survival genes

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2018
Editora
BIOMED CENTRAL LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
MACIEL-SILVA, Paula
CALDEIRA, Izabela
SANTOS, Icaro de Assis
ANTONIOLI, Eliane
GOLDBERG, Anna Carla
BELIZARIO, Jose Ernesto
GARAY-MALPARTIDA, Humberto Miguel
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BMC CANCER, v.18, article ID 90, 15p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: FAM3B/PANDER is a novel cytokine-like protein that induces apoptosis in insulin-secreting beta-cells. Since in silico data revealed that FAM3B can be expressed in prostate tumors, we evaluated the putative role of this cytokine in prostate tumor progression. Methods: FAM3B expression was analyzed by quantitative PCR in tumor tissue clinical samples and prostate tumor cell lines. Culture growth and viability of DU145 cell line were evaluated after treatment with either exogenous FAM3B protein obtained from conditioned media (CM) of 293 T cells overexpressing FAM3B or a recombinant FAM3B protein produced in a bacterial host. DU145 cells overexpressing FAM3B protein were produced by lentiviral-mediated transduction of full-length FAM3B cDNA. Cell viability and apoptosis were analyzed in DU145/FAM3B cells after treatment with several cell death inducers, such as TNF-alpha, staurosporine, etoposide, camptothecin, and serum starvation conditions. Anchorage-independent growth in soft agarose assay was used to evaluate in vitro tumorigenicity. In vivo tumorigenicity and invasiveness were evaluated by tumor xenograft growth in nude mice. Results: We observed an increase in FAM3B expression in prostate tumor samples when compared to normal tissues. DU145 cell viability and survival increased after exogenous treatment with recombinant FAM3B protein or FAM3B-secreted protein. Overexpression of FAM3B in DU145 cells promoted inhibition of DNA fragmentation and phosphatidylserine externalization in a time and dose-dependent fashion, upon apoptosis triggered by TNF-alpha. These events were accompanied by increased gene expression of anti-apoptotic Bcl-2 and Bcl-XL, decreased expression of pro-apoptotic Bax and diminished caspase-3, -8 and -9 proteolytic activities. Furthermore, inhibition of Bcl-2 antiapoptotic family proteins with small molecules antagonists decreases protective effects of FAM3B in DU145 cells. When compared to the respective controls, cells overexpressing FAM3B displayed a decreased anchorage-independent growth in vitro and increased tumor growth in xenografted nude mice. The immunohistochemistry analysis of tumor xenografts revealed a similar anti-apoptotic phenotype displayed by FAM3B-overexpressing tumor cells. Conclusions: Taken together, by activating pro-survival mechanisms FAM3B overexpression contributes to increased resistance to cell death and tumor growth in nude mice, highlighting a putative role for this cytokine in prostate cancer progression.
Palavras-chave
FAM3B, Prostate cancer, Apoptosis, Cytokines, Tumor growth
Referências
  1. Anvari K, 2012, UROL J, V9, P381
  2. Askari N, 2012, J BIOTECHNOL, V157, P75, DOI 10.1016/j.jbiotec.2011.10.007
  3. Burkhardt BR, 2006, GENE, V369, P134, DOI 10.1016/j.gene.2005.10.040
  4. Cao XP, 2003, DIABETES, V52, P2296, DOI 10.2337/diabetes.52.9.2296
  5. Catz SD, 2003, APOPTOSIS, V8, P29, DOI 10.1023/A:1021692801278
  6. Cheung CHA, 2010, CANCER CELL INT, V10, DOI 10.1186/1475-2867-10-36
  7. Chiu JJ, 1996, CLIN CANCER RES, V2, P215
  8. Culig Z, 2005, J CELL BIOCHEM, V95, P497, DOI 10.1002/jcb.20477
  9. Frost PJ, 1999, PROSTATE, V41, P20, DOI 10.1002/(SICI)1097-0045(19990915)41:1<20::AID-PROS4>3.0.CO;2-W
  10. Krajewska M, 1996, AM J PATHOL, V148, P1567
  11. Li J, 2011, HEPATOLOGY, V53, P1906, DOI 10.1002/hep.24295
  12. Li ZM, 2013, CANCER LETT, V328, P278, DOI 10.1016/j.canlet.2012.09.026
  13. Lian J, 2011, CELL DEATH DIFFER, V18, P60, DOI 10.1038/cdd.2010.74
  14. Lin YT, 2007, CELL RES, V17, P531, DOI 10.1038/cr.2007.12
  15. Liu L, 2012, CLIN EXP IMMUNOL, V169, P100, DOI 10.1111/j.1365-2249.2012.04596.x
  16. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  17. Mora LB, 2002, CANCER RES, V62, P6659
  18. Mou HW, 2013, INT J BIOCHEM CELL B, V45, P684, DOI 10.1016/j.biocel.2012.12.003
  19. Nguyen M, 2007, P NATL ACAD SCI USA, V104, P19512, DOI 10.1073/pnas.0709443104
  20. Ogura T, 2016, INT J ONCOL, V48, P2330, DOI 10.3892/ijo.2016.3482
  21. Reinhold WC, 2003, CANCER RES, V63, P1000
  22. Robert-Cooperman CE, 2010, DIABETES, V59, P2209, DOI 10.2337/db09-1552
  23. Rothermund CA, 2002, PROSTATE CANCER P D, V5, P236, DOI 10.1038/sj.pcan.4500582
  24. Shi J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061132
  25. Sun ZJ, 2008, BRIT J CANCER, V99, P1656, DOI 10.1038/sj.bjc.6604712
  26. Tang P, 2011, BMC GASTROENTEROL, V11, DOI 10.1186/1471-230X-11-60
  27. Tse BC, 2012, PROSTATE CANCER, DOI 10.1155/2012/128965
  28. Vitali R, 2008, CLIN CANCER RES, V14, P4622, DOI 10.1158/1078-0432.CCR-07-5210
  29. Wang CJ, 2012, NUTR REV, V70, P100, DOI 10.1111/j.1753-4887.2011.00457.x
  30. Wang YP, 2013, WORLD J SURG ONCOL, V11, DOI 10.1186/1477-7819-11-12
  31. Wilson CG, 2011, FEBS LETT, V585, P2137, DOI 10.1016/j.febslet.2011.05.059
  32. Wilson CG, 2010, ENDOCRINOLOGY, V151, P5174, DOI 10.1210/en.2010-0379
  33. Witting SR, 2012, HUM GENE THER, V23, P243, DOI 10.1089/hum.2011.088
  34. Yang JC, 2005, DIABETES, V54, P3217, DOI 10.2337/diabetes.54.11.3217
  35. Yang JC, 2005, BIOCHEMISTRY-US, V44, P11342, DOI 10.1021/bi0503908
  36. Yang JC, 2009, FEBS LETT, V583, P3009, DOI 10.1016/j.febslet.2009.08.008
  37. Zhang HC, 1996, PROSTATE, V29, P69
  38. Zhao LY, 2014, CANCER EPIDEM BIOMAR, V23, P1047, DOI 10.1158/1055-9965.EPI-13-0696
  39. Zhu Y, 2002, GENOMICS, V80, P144, DOI 10.1006/geno.2002.6816