Mitochondrial Swelling and Incipient Outer Membrane Rupture in Preapoptotic and Apoptotic Cells

Carregando...
Imagem de Miniatura
Citações na Scopus
61
Tipo de produção
article
Data de publicação
2012
Editora
WILEY-BLACKWELL
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
BELIZARIO, J. E.
MARQUES, M. M.
SCHUMACHER, R. I.
COLQUHOUN, A.
ITO, E.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, v.295, n.10, p.1647-1659, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM rupture is not caused by a membrane stretching promoted by a markedly swollen matrix. It is shown that the widths of the ruptured regions of the OMM vary from 6 to 250 nm. Independent of the perforation size, herniation of the mitochondrial matrix appeared to have resulted in pushing the IMM through the perforation. A large, long focal herniation of the mitochondrial matrix, covered with the IMM, was associated with a rupture of the OMM that was as small as 6 nm. Contextually, the collapse of the selective permeability of the IMM may precede or follow the release of the mitochondrial proteins of the intermembrane space into the cytoplasm. When the MPT is a late event, exit of the intermembrane space proteins to the cytoplasm is unimpeded and occurs through channels that transverse the outer membrane, because so far, the inner membrane is impermeable. No channel within the outer membrane can expose to the cytoplasm a permeable inner membrane, because it would serve as a conduit for local herniation of the mitochondrial matrix. Anat Rec, 2012. (c) 2012 Wiley Periodicals, Inc.
Palavras-chave
electron microscopy, mitochondria, apoptosis, rupture of the outer mitochondrial membrane, focal matrix herniation in mitochondria, inner mitochondrial membrane, mitochondrial outer membrane permeabilization, mitochondrial proteins of the intermembrane space, mitochon-drial permeability transition, outer mitochon-drial membrane
Referências
  1. Abdelwahid E, 2007, DEV CELL, V12, P793, DOI 10.1016/j.devcel.2007.04.004
  2. Angermuller S, 1998, J HISTOCHEM CYTOCHEM, V46, P1175
  3. Armstrong JS, 2006, MITOCHONDRION, V6, P225, DOI 10.1016/j.mito.2006.07.006
  4. Basanez G, 1999, P NATL ACAD SCI USA, V96, P5492, DOI 10.1073/pnas.96.10.5492
  5. Basanez G, 2002, J BIOL CHEM, V277, P49360, DOI 10.1074/jbc.M206069200
  6. Brenner C, 2000, SCIENCE, V289, P1150, DOI 10.1126/science.289.5482.1150
  7. Charlot JF, 2004, APOPTOSIS, V9, P333, DOI 10.1023/B:APPT.0000025810.58981.4c
  8. Chipuk JE, 2006, CELL DEATH DIFFER, V13, P1396, DOI 10.1038/sj.cdd.4401963
  9. Desagher S, 2000, TRENDS CELL BIOL, V10, P369, DOI 10.1016/S0962-8924(00)01803-1
  10. Dussmann H, 2003, J CELL SCI, V116, P525, DOI 10.1242/jcs.00236
  11. Feldmann G, 2000, HEPATOLOGY, V31, P674, DOI 10.1002/hep.510310318
  12. Garcia-Perez C, 2012, P NATL ACAD SCI USA, V109, P4497, DOI 10.1073/pnas.1118244109
  13. Gogvadze V, 2006, BBA-BIOENERGETICS, V1757, P639, DOI 10.1016/j.bbabio.2006.03.016
  14. Green DR, 2006, CANCER CELL, V9, P328, DOI 10.1016/j.ccr.2006.05.004
  15. Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309
  16. Green DR, 2004, SCIENCE, V305, P626, DOI 10.1126/science.1099320
  17. Grimm S, 2007, APOPTOSIS, V12, P841, DOI 10.1007/s10495-007-0747-3
  18. HACKENBR.CR, 1966, J CELL BIOL, V30, P269, DOI 10.1083/jcb.30.2.269
  19. Higuchi Y, 2005, FEBS LETT, V579, P3009, DOI 10.1016/j.febslet.2005.04.054
  20. HO PL, 1992, J CELL PHYSIOL, V150, P647, DOI 10.1002/jcp.1041500326
  21. Indran IR, 2011, BBA-BIOENERGETICS, V1807, P735, DOI 10.1016/j.bbabio.2011.03.010
  22. Karpinich NO, 2002, J BIOL CHEM, V277, P16547, DOI 10.1073/jbc.M110629200
  23. Kinnally KW, 2007, APOPTOSIS, V12, P857, DOI 10.1007/s10495-007-0722-z
  24. Kinnally KW, 2010, BIOCHIM BIOPHYS ACTA, DOI [10.1016/j.bbamcr.2010.09.13, DOI 10.1016/J.BBAMCR.2010.09.13]
  25. Kowaltowski AJ, 2001, FEBS LETT, V495, P12, DOI 10.1016/S0014-5793(01)02316-X
  26. Kroemer G, 2007, PHYSIOL REV, V87, P99, DOI 10.1152/physrev.00013.2006
  27. Kwong J, 1999, CELL TISSUE RES, V298, P123, DOI 10.1007/s004419900057
  28. Lemasters JJ, 2009, BBA-BIOENERGETICS, V1787, P1395, DOI 10.1016/j.bbabio.2009.06.009
  29. Li HL, 1998, CELL, V94, P491, DOI 10.1016/S0092-8674(00)81590-1
  30. Liu JF, 2008, FEBS LETT, V582, P1319, DOI 10.1016/j.febslet.2008.03.013
  31. Ly JD, 2003, APOPTOSIS, V8, P115, DOI 10.1023/A:1022945107762
  32. Machida K, 2003, ANN NY ACAD SCI, V1010, P182, DOI 10.1196/annals.1299.031
  33. Martinou JC, 2001, NAT REV MOL CELL BIO, V2, P63, DOI 10.1038/35048069
  34. Ott M, 2007, APOPTOSIS, V12, P913, DOI 10.1007/s10495-007-0756-2
  35. Petit PX, 1998, FEBS LETT, V426, P111, DOI 10.1016/S0014-5793(98)00318-4
  36. Petit PX, 1996, FEBS LETT, V396, P7, DOI 10.1016/0014-5793(96)00988-X
  37. Rasola A, 2007, APOPTOSIS, V12, P815, DOI 10.1007/s10495-007-0723-y
  38. Reed JC, 2002, MOL CELL, V9, P1, DOI 10.1016/S1097-2765(02)00437-9
  39. Robertson JD, 2003, CELL DEATH DIFFER, V10, P485, DOI 10.1038/sj.cdd.4401218
  40. Scarlett JL, 1997, FEBS LETT, V418, P282, DOI 10.1016/S0014-5793(97)01391-4
  41. Schafer B, 2009, MOL BIOL CELL, V20, P2276, DOI 10.1091/mbc.E08-10-1056
  42. Sesso A, 2004, ANAT REC PART A, V281A, P1337, DOI 10.1002/ar.a.20134
  43. Sesso A, 1999, TISSUE CELL, V31, P357, DOI 10.1054/tice.1999.0042
  44. Sesso Antonio, 2006, Brazilian Journal of Morphological Sciences, V23, P57
  45. Sharpe JC, 2004, BBA-MOL CELL RES, V1644, P107, DOI 10.1016/j.bbamcr.2003.10.016
  46. Shimizu T, 2004, P NATL ACAD SCI USA, V101, P6770, DOI 10.1073/pnas.0401604101
  47. Skulachev VP, 1996, FEBS LETT, V397, P7, DOI 10.1016/0014-5793(96)00989-1
  48. STONER CD, 1969, J CELL BIOL, V43, P521, DOI 10.1083/jcb.43.3.521
  49. Tafani M, 2001, CANCER RES, V61, P2459
  50. Vogler M, 2008, CELL DEATH DIFFER, V15, P820, DOI 10.1038/cdd.2008.25
  51. Zoratti M, 2005, BBA-BIOENERGETICS, V1706, P40, DOI 10.1016/j.bbabio.2004.10.006