Nc886 is epigenetically repressed in prostate cancer and acts as a tumor suppressor through the inhibition of cell growth

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
FORT, Rafael Sebastian
MATHO, Cecilia
GERALDO, Murilo Vieira
OTTATI, Maria Carolina
YAMASHITA, Alex Shimura
SAITO, Kelly Cristina
MENDEZ, Manuel
MAEDO, Noemi
MENDEZ, Laura
Citação
BMC CANCER, v.18, article ID 127, 13p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Nc886 is a 102 bp non-coding RNA transcript initially classified as a microRNA precursor (Pre-miR-886), later as a divergent homologue of the vault RNAs (vtRNA 2-1) and more recently as a novel type of RNA (nc886). Although nc886/vtRNA2-1/Pre-miR-886 identity is still controversial, it was shown to be epigenetically controlled, presenting both tumor suppressor and oncogenic function in different cancers. Here, we study for the first time the role of nc886 in prostate cancer. Methods: Nc886 promoter methylation status and its correlation with patient clinical parameters or DNMTs levels were evaluated in TCGA and specific GEO prostate tissue datasets. Nc886 level was measured by RT-qPCR to compare normal/neoplastic prostate cells from radical prostatectomies and cell lines, and to assess nc886 response to demethylating agents. The effect of nc886 recovery in cell proliferation (in vitro and in vivo) and invasion (in vitro) was evaluated using lentiviral transduced DU145 and LNCaP cell lines. The association between the expression of nc886 and selected genes was analyzed in the TCGA-PRAD cohort. Results: Nc886 promoter methylation increases in tumor vs. normal prostate tissue, as well as in metastatic vs. normal prostate tissue. Additionally, nc886 promoter methylation correlates with prostate cancer clinical staging, including biochemical recurrence, Clinical T-value and Gleason score. Nc886 transcript is downregulated in tumor vs. normal tissue -in agreement with its promoter methylation status-and increases upon demethylating treatment. In functional studies, the overexpression of nc886 in the LNCaP and DU145 cell line leads to a decreased in vitro cell proliferation and invasion, as well as a reduced in vivo cell growth in NUDE-mice tumor xenografts. Finally, nc886 expression associates with the prostate cancer cell cycle progression gene signature in TCGA-PRAD. Conclusions: Our data suggest a tumor suppressor role for nc886 in the prostate, whose expression is epigenetically silenced in cancer leading to an increase in cell proliferation and invasion. Nc886 might hold clinical value in prostate cancer due to its association with clinical parameters and with a clinically validated gene signature.
Palavras-chave
Cancer, Prostate, Metastasis, Vault RNA, nc886, vtrna2-1, miR-886, DNA methylation, Tumor suppressor, TCGA
Referências
  1. Amort M, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8030
  2. Aryee MJ, 2013, SCI TRANSL MED, V5, DOI 10.1126/scitranslmed.3005211
  3. Barrett T, 2013, NUCLEIC ACIDS RES, V41, pD991, DOI 10.1093/nar/gks1193
  4. Benbrahim-Tallaa L, 2007, ENVIRON HEALTH PERSP, V115, P1454, DOI 10.1289/ehp.10207
  5. Bolton EM, 2014, CLIN CANCER RES, V20, P35, DOI 10.1158/1078-0432.CCR-13-1989
  6. Cao JZ, 2013, CANCER RES, V73, P3326, DOI 10.1158/0008-5472.CAN-12-3055
  7. Croce CM, 2009, NAT REV GENET, V10, P704, DOI 10.1038/nrg2634
  8. Cuzick J, 2011, LANCET ONCOL, V12, P245, DOI 10.1016/S1470-2045(10)70295-3
  9. Doldi V, 2016, CELL MOL LIFE SCI, V73, P2531, DOI 10.1007/s00018-016-2176-3
  10. Du YF, 2012, GENET MOL BIOL, V35, P164, DOI 10.1590/S1415-47572012005000021
  11. Fendler A, 2011, INT J ONCOL, V39, P1183, DOI 10.3892/ijo.2011.1128
  12. Ferlay J, 2015, INT J CANCER, V136, pE359, DOI 10.1002/ijc.29210
  13. Ferlay J, 2010, INT J CANCER, V127, P2893, DOI 10.1002/ijc.25516
  14. Goldman M, 2013, NUCLEIC ACIDS RES, V41, pD949, DOI 10.1093/nar/gks1008
  15. Gravina GL, 2013, ONCOL REP, V29, P1189, DOI 10.3892/or.2012.2192
  16. Hoffmann MJ, 2007, CANCER BIOL THER, V6, P1403, DOI 10.4161/cbt.6.9.4542
  17. Huang WY, 2015, NUCLEIC ACIDS RES, V43, pD856, DOI 10.1093/nar/gku1151
  18. Jeon SH, 2012, INT J MOL SCI, V13, P13134, DOI 10.3390/ijms131013134
  19. Jeon SH, 2012, FEBS LETT, V586, P3477, DOI 10.1016/j.febslet.2012.07.076
  20. Kinney SRM, 2008, MOL CANCER RES, V6, P1365, DOI 10.1158/1541-7786.MCR-08-0040
  21. Kirby MK, 2017, BMC CANCER, V17, DOI 10.1186/s12885-017-3252-2
  22. Kunkeaw N, 2013, ONCOGENE, V32, P3722, DOI 10.1038/onc.2012.382
  23. Lee EK, 2016, ONCOTARGET, V7, P75000, DOI 10.18632/oncotarget.11852
  24. Lee HS, 2014, ONCOTARGET, V5, P3472, DOI 10.18632/oncotarget.1927
  25. Lee K, 2011, RNA, V17, P1076, DOI 10.1261/rna.2701111
  26. Lee KS, 2014, ONCOTARGET, V5, P3944, DOI 10.18632/oncotarget.2047
  27. Lee Yong Sun, 2015, Genomics & Informatics, V13, P26, DOI 10.5808/GI.2015.13.2.26
  28. Mouraviev V, 2016, PROSTATE CANCER P D, V19, P14, DOI 10.1038/pcan.2015.48
  29. Nandy C, 2009, J MOL BIOL, V388, P776, DOI 10.1016/j.jmb.2009.03.031
  30. Paliwal A, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003622
  31. Patra SK, 2002, MOL CARCINOGEN, V33, P163, DOI 10.1002/mc.10033
  32. Romanelli V, 2014, EPIGENETICS-US, V9, P783, DOI 10.4161/epi.28323
  33. Saeed AI, 2003, BIOTECHNIQUES, V34, P374
  34. Saini S, 2016, CELL ONCOL, V39, P97, DOI 10.1007/s13402-016-0268-6
  35. Shukeir N, 2015, BRIT J PHARMACOL, V172, P2769, DOI 10.1111/bph.13102
  36. Silver MJ, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0660-y
  37. Singal R, 2005, ONCOL REP, V14, P569
  38. Stadler PF, 2009, MOL BIOL EVOL, V26, P1975, DOI 10.1093/molbev/msp112
  39. Statham AL, 2012, GENOME RES, V22, P1120, DOI 10.1101/gr.132076.111
  40. Treppendahl MB, 2012, BLOOD, V119, P206, DOI 10.1182/blood-2011-06-362541
  41. Wilusz JE, 2009, GENE DEV, V23, P1494, DOI 10.1101/gad.1800909
  42. Yang XJ, 2014, CANCER CELL, V26, P577, DOI 10.1016/j.ccr.2014.07.028