A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure

Carregando...
Imagem de Miniatura
Citações na Scopus
89
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
CELL PRESS
Autores
SUNG, Yun J.
WINKLER, Thomas W.
FUENTES, Lisa de las
BENTLEY, Amy R.
BROWN, Michael R.
KRAJA, Aldi T.
SCHWANDER, Karen
NTALLA, Ioanna
GUO, Xiuqing
FRANCESCHINI, Nora
Citação
AMERICAN JOURNAL OF HUMAN GENETICS, v.102, n.3, p.375-400, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined similar to 18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 x 10(-8)) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 x 10(-8)). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling MSRA, EBF2).
Palavras-chave
Referências
  1. Altshuler DM, 2012, NATURE, V491, P56, DOI 10.1038/nature11632
  2. Ambatipudi S, 2016, EPIGENOMICS-UK, V8, P599, DOI 10.2217/epi-2016-0001
  3. Ardlie KG, 2015, SCIENCE, V348, P648, DOI 10.1126/science.1262110
  4. Aschard H, 2010, HUM HERED, V70, P292, DOI 10.1159/000323318
  5. Aulchenko YS, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-134
  6. BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
  7. Bierut LJ, 2007, HUM MOL GENET, V16, P24, DOI 10.1093/hmg/ddl441
  8. Bis JC, 2011, NAT GENET, V43, P940, DOI 10.1038/ng.920
  9. Boardman-Pretty F, 2015, CIRC-CARDIOVASC GENE, V8, P696, DOI 10.1161/CIRCGENETICS.115.001062
  10. Boone M, 2008, PFLUG ARCH EUR J PHY, V456, P1005, DOI 10.1007/s00424-008-0498-1
  11. Boyle AP, 2012, GENOME RES, V22, P1790, DOI 10.1101/gr.137323.112
  12. Butt HZ, 2010, EUR J VASC ENDOVASC, V40, P17, DOI 10.1016/j.ejvs.2010.04.012
  13. Claussnitzer M, 2015, NEW ENGL J MED, V373, P895, DOI 10.1056/NEJMoa1502214
  14. CROFT JB, 1990, AM J MED GENET, V36, P37, DOI 10.1002/ajmg.1320360109
  15. Davydov EV, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1001025
  16. Del Greco FM, 2011, HUM MOL GENET, V20, P1660, DOI 10.1093/hmg/ddr035
  17. Devlin B, 1999, BIOMETRICS, V55, P997, DOI 10.1111/j.0006-341X.1999.00997.x
  18. Edwards AC, 2012, PSYCHIAT GENET, V22, P31, DOI 10.1097/YPG.0b013e32834acd07
  19. Ehret GB, 2016, NAT GENET, V48, P1171, DOI 10.1038/ng.3667
  20. Ehret GB, 2011, NATURE, V478, P103, DOI 10.1038/nature10405
  21. Febbo PG, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-461
  22. Franceschini N, 2013, AM J HUM GENET, V93, P545, DOI 10.1016/j.ajhg.2013.07.010
  23. Frayling TM, 2007, SCIENCE, V316, P889, DOI 10.1126/science.1141634
  24. Ganesh SK, 2013, HUM MOL GENET, V22, P1663, DOI 10.1093/hmg/dds555
  25. Garber M, 2009, BIOINFORMATICS, V25, pI54, DOI 10.1093/bioinformatics/btp190
  26. Gertow K, 2012, CIRC-CARDIOVASC GENE, V5, P656, DOI 10.1161/CIRCGENETICS.112.963660
  27. Go AS, 2014, CIRCULATION, V129, pE28, DOI 10.1161/01.cir.0000441139.02102.80
  28. GREEN MS, 1986, AM HEART J, V111, P932, DOI 10.1016/0002-8703(86)90645-9
  29. Guo HL, 2012, CELL RES, V22, P1246, DOI 10.1038/cr.2012.52
  30. Hemerich D, 2015, ATHEROSCLEROSIS, V243, P466, DOI 10.1016/j.atherosclerosis.2015.10.017
  31. Hoffmann TJ, 2017, NAT GENET, V49, P54, DOI 10.1038/ng.3715
  32. Hunter DJ, 2005, NAT REV GENET, V6, P287, DOI 10.1038/nrg1578
  33. Husson H, 2016, HUM MOL GENET, V25, P2245, DOI 10.1093/hmg/ddw093
  34. IMBS JL, 1975, EUR J PHARMACOL, V33, P151, DOI 10.1016/0014-2999(75)90150-8
  35. Joehanes R, 2017, GENOME BIOL, V18, DOI 10.1186/s13059-016-1142-6
  36. Johnson T, 2011, AM J HUM GENET, V89, P688, DOI 10.1016/j.ajhg.2011.10.013
  37. Justice AE, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14977
  38. Kathiresan S, 2009, NAT GENET, V41, P56, DOI 10.1038/ng.291
  39. Kawaguchi T, 2010, BIOCHEM BIOPH RES CO, V391, P1336, DOI 10.1016/j.bbrc.2009.12.045
  40. Keller MC, 2014, BIOL PSYCHIAT, V75, P18, DOI 10.1016/j.biopsych.2013.09.006
  41. Koshimizu T, 2006, P NATL ACAD SCI USA, V103, P7807, DOI 10.1073/pnas.0600875103
  42. Levran O, 2015, PHARMACOGENOMICS, V16, P1329, DOI [10.2217/PGS.15.86, 10.2217/pgs.15.86]
  43. Levy D, 2009, NAT GENET, V41, P677, DOI 10.1038/ng.384
  44. Lewington S, 2002, LANCET, V360, P1903
  45. Li XX, 2001, HYPERTENSION, V38, P303, DOI 10.1161/01.HYP.38.3.303
  46. Liang JJ, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006728
  47. Liew CW, 2013, NAT MED, V19, P217, DOI 10.1038/nm.3056
  48. Liu CY, 2016, NAT GENET, V48, P1162, DOI 10.1038/ng.3660
  49. MANN SJ, 1991, JAMA-J AM MED ASSOC, V265, P2226, DOI 10.1001/jama.265.17.2226
  50. Manning AK, 2012, NAT GENET, V44, P659, DOI 10.1038/ng.2274
  51. Manning AK, 2011, GENET EPIDEMIOL, V35, P11, DOI 10.1002/gepi.20546
  52. Manolio TA, 2009, NATURE, V461, P747, DOI 10.1038/nature08494
  53. Marchini J, 2010, NAT REV GENET, V11, P499, DOI 10.1038/nrg2796
  54. Marples D, 1998, AM J PHYSIOL-RENAL, V274, pF384, DOI 10.1152/ajprenal.1998.274.2.F384
  55. Nelson CP, 2017, NAT GENET, V49, P1385, DOI 10.1038/ng.3913
  56. Newton-Cheh C, 2009, NAT GENET, V41, P666, DOI 10.1038/ng.361
  57. Nutt DJ, 2015, NAT REV NEUROSCI, V16, P305, DOI 10.1038/nrn3939
  58. Pelsers MMAL, 2005, CLIN CHIM ACTA, V352, P15, DOI 10.1016/j.cccn.2004.09.001
  59. Pers TH, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms6890
  60. Pickrell JK, 2010, NATURE, V464, P768, DOI 10.1038/nature08872
  61. Primatesta P, 2001, HYPERTENSION, V37, P187, DOI 10.1161/01.HYP.37.2.187
  62. Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795
  63. Randall JC, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003500
  64. Rao DC, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.116.001649
  65. Reilly D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0085369
  66. Saccone NL, 2010, GENES BRAIN BEHAV, V9, P741, DOI 10.1111/j.1601-183X.2010.00608.x
  67. Sakata M, 2002, BRAIN RES, V928, P194, DOI 10.1016/S0006-8993(01)03402-3
  68. Schueler M, 2016, J MED GENET, V53, P208, DOI 10.1136/jmedgenet-2015-103304
  69. Setsuta K, 2014, INT J CARDIOL, V176, P1323, DOI 10.1016/j.ijcard.2014.07.150
  70. Shi G, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171446
  71. Simms RJ, 2011, INT J NEPHROL, DOI 10.4061/2011/527137
  72. Singh R, 2013, HUM MUTAT, V34, P1221, DOI 10.1002/humu.22360
  73. Skol AD, 2006, NAT GENET, V38, P209, DOI 10.1038/ng1706
  74. Speliotes EK, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1001324
  75. Stoynev N, 2014, J CARDIOVASC MED, V15, P702, DOI 10.2459/JCM.0b013e32835dbcc8
  76. Stratigopoulos G, 2014, CELL METAB, V19, P767, DOI 10.1016/j.cmet.2014.04.009
  77. Stratigopoulos G, 2011, J BIOL CHEM, V286, P2155, DOI 10.1074/jbc.M110.188482
  78. Sung YJ, 2016, GENET EPIDEMIOL, V40, P404, DOI 10.1002/gepi.21978
  79. Surendran P, 2016, NAT GENET, V48, P1151, DOI 10.1038/ng.3654
  80. Swan GE, 2006, AM J MED GENET B, V141B, P354, DOI 10.1002/ajmg.b.30315
  81. Taylor A, 2014, J NEURAL TRANSM, V121, P105, DOI 10.1007/s00702-013-1065-2
  82. Tchetgen EJT, 2011, EPIDEMIOLOGY, V22, P257, DOI 10.1097/EDE.0b013e31820877c5
  83. Teslovich TM, 2010, NATURE, V466, P707, DOI 10.1038/nature09270
  84. Tomaszewski M, 2009, ARTERIOSCL THROM VAS, V29, P1316, DOI 10.1161/ATVBAHA.109.185355
  85. Tyrrell J, 2017, INT J EPIDEMIOL, V46, P559, DOI 10.1093/ije/dyw337
  86. Voorman A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019416
  87. Ward LD, 2012, NUCLEIC ACIDS RES, V40, pD930, DOI 10.1093/nar/gkr917
  88. Warren HR, 2017, NAT GENET, V49, P403, DOI 10.1038/ng.3768
  89. Waterworth DM, 2010, ARTERIOSCL THROM VAS, V30, P2264, DOI 10.1161/ATVBAHA.109.201020
  90. Willer CJ, 2010, BIOINFORMATICS, V26, P2190, DOI 10.1093/bioinformatics/btq340
  91. Winkler TW, 2015, BIOINFORMATICS, V31, P259, DOI 10.1093/bioinformatics/btu621
  92. Winkler TW, 2014, NAT PROTOC, V9, P1192, DOI 10.1038/nprot.2014.071
  93. Winlaw DS, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.117.001967
  94. Young AI, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12724
  95. Yu KY, 2014, BASIC RES CARDIOL, V109, DOI 10.1007/s00395-014-0416-y
  96. Zee RYL, 2011, CLIN CHIM ACTA, V412, P199, DOI 10.1016/j.cca.2010.10.003
  97. Zeileis A, 2006, J STAT SOFTW, V16
  98. Zhu XF, 2015, AM J HUM GENET, V96, P21, DOI 10.1016/j.ajhg.2014.11.011