Homozygous and Heterozygous Nuclear Lamin A p.R582C Mutation: Different Lipodystrophic Phenotypes in the Same Kindred

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
MONTENEGRO JR., Renan Magalhaes
FERNANDES, Virginia Oliveira
MONTENEGRO, Ana Paula Dias Rangel
KARBAGE, Lia Beatriz de Azevedo Souza
AGUIAR, Lindenberg Barbosa
CARVALHO, Francisco Herlanio Costa
Citação
FRONTIERS IN ENDOCRINOLOGY, v.9, article ID 458, 9p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Dunnigan-type familial partial lipodystrophy (FPLD2) is a rare autosomal dominant disease caused by heterozygous mutations in the LMNA gene that results in regional loss of subcutaneous adipose tissue with onset in puberty. However, a generalized lipodystrophy phenotype has also been associated with heterozygous mutations in this gene, demonstrating the noticeable phenotypic heterogeneity of this disease. Methods: We report and describe clinical and metabolic features of four patients from the same family with the p.R582C LMNA mutation, three homozygous and one in the heterozygous state that present with three distinct lipodystrophic phenotypes. Results: Case description: The proband was a 12-year-old girl who developed severe subcutaneous fat atrophy in limbs and abdomen followed by a remarkable dorsocervical fat accumulation in adulthood along with diabetes at age 23. The proband's sister was a phenotypically normal girl who developed hypertriglyceridemia at age 8, progressive features of partial lipodystrophy at age 11, and diabetes at age 22. The proband's mother was first examined at age 32, presenting diabetes and a severe generalized lipodystrophic phenotype; she developed kidney failure at age 41 and died due to diabetic complications. The proband's father was a 50-year-old man with abdominal fat concentration that was initially considered phenotypically normal. Massively parallel sequencing using a platform of genes related to genetic lipodystrophies, followed by Sanger sequencing, revealed the transversion c.1744C>T at exon 11 of the LMNA gene (p.R582C) in the homozygous (mother and daughters) and heterozygous (father) states. Conclusion: We documented three distinct phenotypes of the homozygous and heterozygous p. R582C LMNA mutation in the same kindred, illustrating that FPLD2 linked to mutations in this gene is a disease of great clinical heterogeneity, possibly due to associated environmental or genetic factors.
Palavras-chave
Dunnigan, partial lipodystrophy, generalized lipodystrophy, LMNA, FPLD2, phenotypic heterogen
Referências
  1. Andre P, 2015, AM HEART J, V169, P587, DOI 10.1016/j.ahj.2014.12.021
  2. Araujo-Vilar D, 2003, HORM METAB RES, V35, P29, DOI 10.1055/s-2003-38388
  3. Bonne G, 1999, NAT GENET, V21, P285, DOI 10.1038/6799
  4. Caetano LA, 2018, CLIN GENET, V93, P382, DOI 10.1111/cge.13044
  5. Cao H, 2000, HUM MOL GENET, V9, P109, DOI 10.1093/hmg/9.1.109
  6. Caux F, 2003, J CLIN ENDOCR METAB, V88, P1006, DOI 10.1210/jc.2002-021506
  7. De Sandre-Giovannoli A, 2002, AM J HUM GENET, V70, P726, DOI 10.1086/339274
  8. Elzeneini E, 2017, J CELL BIOL, V216, P2607, DOI 10.1083/jcb.201707090
  9. Eriksson M, 2003, NATURE, V423, P293, DOI 10.1038/nature01629
  10. Fatkin D, 1999, NEW ENGL J MED, V341, P1715, DOI 10.1056/NEJM199912023412302
  11. Garg A, 1999, J CLIN ENDOCR METAB, V84, P170, DOI 10.1210/jc.84.1.170
  12. Gruenbaum Y, 2015, ANNU REV BIOCHEM, V84, P131, DOI 10.1146/annurev-biochem-060614-034115
  13. Hegele RA, 2000, J CLIN ENDOCR METAB, V85, P3431, DOI 10.1210/jc.85.9.3431
  14. Hegele RA, 2005, CLIN GENET, V68, P31, DOI 10.1111/j.1399-0004.2005.00447.x
  15. Hussain I, 2018, J CLIN ENDOCR METAB, V103, P1005, DOI 10.1210/jc.2017-02078
  16. KOBBERLING J, 1986, J MED GENET, V23, P120, DOI 10.1136/jmg.23.2.120
  17. Krimm I, 2002, STRUCTURE, V10, P811, DOI 10.1016/S0969-2126(02)00777-3
  18. Le Dour C, 2011, J CLIN ENDOCR METAB, V96, pE856, DOI 10.1210/jc.2010-2234
  19. Lloyd DJ, 2002, HUM MOL GENET, V11, P769, DOI 10.1093/hmg/11.7.769
  20. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  21. Mory PB, 2012, EUR J ENDOCRINOL, V167, P423, DOI 10.1530/EJE-12-0268
  22. Mory PB, 2008, ARQ BRAS ENDOCRINOL, V52, P1252, DOI 10.1590/S0004-27302008000800008
  23. Muchir A, 2000, HUM MOL GENET, V9, P1453, DOI 10.1093/hmg/9.9.1453
  24. Novelli G, 2002, AM J HUM GENET, V71, P426, DOI 10.1086/341908
  25. Oldenburg A, 2017, J CELL BIOL, V216, P2731, DOI 10.1083/jcb.201701043
  26. Renard D, 2009, STROKE, V40, pE11, DOI 10.1161/STROKEAHA.108.531780
  27. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  28. SANGER F, 1975, J MOL BIOL, V94, P441, DOI 10.1016/0022-2836(75)90213-2
  29. Shackleton S, 2000, NAT GENET, V24, P153, DOI 10.1038/72807
  30. Stuurman N, 1998, J STRUCT BIOL, V122, P42, DOI 10.1006/jsbi.1998.3987
  31. Tome M, 2011, CELL DEATH DIFFER, V18, P985, DOI 10.1038/cdd.2010.167
  32. Vigouroux C, 2000, DIABETES, V49, P1958, DOI 10.2337/diabetes.49.11.1958