Developmental trajectory of the prefrontal cortex: a systematic review of diffusion tensor imaging studies

Carregando...
Imagem de Miniatura
Citações na Scopus
29
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
SOUSA, Sonia S.
CREGO, Alberto
GONCALVES, Oscar F.
SAMPAIO, Adriana
Citação
BRAIN IMAGING AND BEHAVIOR, v.12, n.4, p.1197-1210, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Fluctuations in gray and white matter volumes in addition to the fibers' reorganization and refinement of synaptic connectivity apparently happen in a particular temporo-spatial sequence during the dynamic and prolonged process of cerebral maturation. These developmental events are associated with regional modifications of brain tissues and neural circuits, contributing to networks' specialization and enhanced cognitive processing. According to several studies, improvements in cognitive processes are possibly myelin-dependent and associated to white matter maturation. Of particular interest is the developmental pattern of the prefrontal cortex (PFC), more specifically the PFC white matter, due to its role in high-level executive processes such as attention, working memory and inhibitory control. A systematic review of the literature was conducted using the Web of Science, PubMed and Embase databases to analyze the development of PFC white matter using Diffusion Tensor Imaging (DTI), a widely used non-invasive technique to assess white matter maturation. Both the research and reporting of results were based on Cochrane's recommendations and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Information extracted from 27 published studies revealed an increased myelination, organization and integrity of frontal white matter with age, as revealed by DTI indexes (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD] and axial diffusivity [AD]). These patterns highlight the extended developmental course of the frontal structural connectivity, which parallels the improvements in higher-level cognitive functions observed between adolescence and early adulthood.
Palavras-chave
Prefrontal cortex, White matter, Myelination, Diffusion tensor imaging, Development
Referências
  1. Alexander AL, 2007, NEUROTHERAPEUTICS, V4, P316, DOI 10.1016/j.nurt.2007.05.011
  2. Alger JR, 2012, J NEUROSCI, V32, P7418, DOI 10.1523/JNEUROSCI.4687-11.2012
  3. Asato MR, 2010, CEREB CORTEX, V20, P2122, DOI 10.1093/cercor/bhp282
  4. Ashtari M, 2007, NEUROIMAGE, V35, P501, DOI 10.1016/j.neuroimage.2006.10.047
  5. Assaf Y, 2008, J MOL NEUROSCI, V34, P51, DOI 10.1007/s12031-007-0029-0
  6. Aung Wint Yan, 2013, Imaging Med, V5, P427
  7. Barnea-Goraly N, 2005, CEREB CORTEX, V15, P1848, DOI 10.1093/cercor/bhi062
  8. Bartzokis G, 2012, BIOL PSYCHIAT, V72, P1026, DOI 10.1016/j.biopsych.2012.07.010
  9. Bava S, 2010, BRAIN RES, V1327, P38, DOI 10.1016/j.brainres.2010.02.066
  10. Beaulieu C, 2002, NMR BIOMED, V15, P435, DOI 10.1002/nbm.782
  11. BENNETT EL, 1964, SCIENCE, V146, P610, DOI 10.1126/science.146.3644.610
  12. Bonekamp D, 2007, NEUROIMAGE, V34, P733, DOI 10.1016/j.neuroimage.2006.09.020
  13. Casey BJ, 2000, BIOL PSYCHOL, V54, P241, DOI 10.1016/S0301-0511(00)00058-2
  14. Chilla GS, 2015, QUANT IMAG MED SURG, V5, P407, DOI 10.3978/j.issn.2223-4292.2015.03.01
  15. Colby JB, 2011, NEUROIMAGE, V54, P25, DOI 10.1016/j.neuroimage.2010.08.014
  16. Deoni SCL, 2011, J NEUROSCI, V31, P784, DOI 10.1523/JNEUROSCI.2106-10.2011
  17. Ding AY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0051704
  18. Dubois J, 2014, NEUROSCIENCE, V276, P48, DOI 10.1016/j.neuroscience.2013.12.044
  19. Durston S, 2001, J AM ACAD CHILD PSY, V40, P1012, DOI 10.1097/00004583-200109000-00009
  20. Eluvathingal TJ, 2007, CEREB CORTEX, V17, P2760, DOI 10.1093/cercor/bhm003
  21. Fields RD, 2008, TRENDS NEUROSCI, V31, P361, DOI 10.1016/j.tins.2008.04.001
  22. Fields RD, 2005, NEUROSCIENTIST, V11, P528, DOI 10.1177/1073858405282304
  23. Fox RJ, 2011, AM J NEURORADIOL, V32, P85, DOI 10.3174/ajnr.A2238
  24. Froeling M., 2016, DIFFUSION TENSOR IMA, P175, DOI 10.1007/978-1-4939-3118-7_9
  25. Gallo G, 2011, DEV NEUROBIOL, V71, P201, DOI 10.1002/dneu.20852
  26. Gibson DA, 2011, DEVELOPMENT, V138, P183, DOI 10.1242/dev.046441
  27. Giedd JN, 2008, J ADOLESCENT HEALTH, V42, P335, DOI 10.1016/j.jadohealth.2008.01.007
  28. Giedd JN, 2006, MOL CELL ENDOCRINOL, V254, P154, DOI 10.1016/j.mce.2006.04.016
  29. Giedd JN, 2010, NEURON, V67, P728, DOI 10.1016/j.neuron.2010.08.040
  30. Giedd JN, 2004, ANN NY ACAD SCI, V1021, P77, DOI 10.1196/annals.1308.009
  31. Giedd JN, 1999, NAT NEUROSCI, V2, P861, DOI 10.1038/13158
  32. Giorgio A, 2008, NEUROIMAGE, V39, P52, DOI 10.1016/j.neuroimage.2007.07.043
  33. Gogtay N, 2004, P NATL ACAD SCI USA, V101, P8174, DOI 10.1073/pnas.0402680101
  34. Hagmann P, 2006, RADIOGRAPHICS, V26, pS205, DOI 10.1148/rg.26si065510
  35. Hasan KM, 2007, NEUROREPORT, V18, P1735, DOI 10.1097/WNR.0b013e3282f0d40c
  36. Hasan KM, 2004, MAGNET RESON MED, V51, P413, DOI 10.1002/mrm.10682
  37. HUTTENLOCHER PR, 1979, BRAIN RES, V163, P195
  38. Jones DK, 2010, NMR BIOMED, V23, P803, DOI 10.1002/nbm.1543
  39. Klingberg T, 1999, NEUROREPORT, V10, P2817, DOI 10.1097/00001756-199909090-00022
  40. Kraus MF, 2007, BRAIN, V130, P2508, DOI 10.1093/brain/awm216
  41. Krogsrud SK, 2016, NEUROIMAGE, V124, P473, DOI 10.1016/j.neuroimage.2015.09.017
  42. Kumar R, 2012, J NEUROSCI RES, V90, P346, DOI 10.1002/jnr.22757
  43. Le Bihan D, 2003, NAT REV NEUROSCI, V4, P469, DOI 10.1038/nrn1119
  44. Le Bihan D, 2001, J MAGN RESON IMAGING, V13, P534, DOI 10.1002/jmri.1076
  45. Lebel C, 2008, NEUROIMAGE, V40, P1044, DOI 10.1016/j.neuroimage.2007.12.053
  46. Lebel C, 2011, J NEUROSCI, V31, P10937, DOI 10.1523/JNEUROSCI.5302-10.2011
  47. Lenroot RK, 2006, NEUROSCI BIOBEHAV R, V30, P718, DOI 10.1016/j.neubiorev.2006.06.001
  48. Li TQ, 2002, DEVELOPMENTAL SCI, V5, P293, DOI 10.1111/1467-7687.00369
  49. Lobel U, 2009, NEURORADIOLOGY, V51, P253, DOI 10.1007/s00234-008-0488-1
  50. Lopez-Caneda E, 2014, ADICCIONES, V26, P334, DOI 10.20882/adicciones.39
  51. Madsen KS, 2010, NEUROPSYCHOLOGIA, V48, P854, DOI 10.1016/j.neuropsychologia.2009.11.001
  52. Martino J, 2013, BRAIN STRUCT FUNCT, V218, P105, DOI 10.1007/s00429-012-0386-5
  53. Medana IM, 2003, BRAIN, V126, P515, DOI 10.1093/brain/awg061
  54. Moher D, 2009, ANN INTERN MED, V151, P264, DOI 10.7326/0003-4819-151-4-200908180-00135
  55. Moon WJ, 2011, AM J ROENTGENOL, V197, P704, DOI 10.2214/AJR.10.6382
  56. Mori S, 2006, NEURON, V51, P527, DOI 10.1016/j.neuron.2006.08.012
  57. Muftuler LT, 2012, BRAIN RES, V1466, P33, DOI 10.1016/j.brainres.2012.05.035
  58. Mukherjee P, 2008, AM J NEURORADIOL, V29, P632, DOI 10.3174/ajnr.A1051
  59. Nagy Z, 2004, J COGNITIVE NEUROSCI, V16, P1227, DOI 10.1162/0898929041920441
  60. Neil J, 2002, NMR BIOMED, V15, P543, DOI 10.1002/nbm.784
  61. Nishikawa R. M., 2013, NONINVASIVE HIGH RES, V8668, DOI 10.1117/12.2006764
  62. Paus T, 1999, SCIENCE, V283, P1908, DOI 10.1126/science.283.5409.1908
  63. Paus T, 2001, BRAIN RES BULL, V54, P255, DOI 10.1016/S0361-9230(00)00434-2
  64. Paus T, 2010, BRAIN COGNITION, V72, P26, DOI 10.1016/j.bandc.2009.06.002
  65. Petanjek Z, 2011, P NATL ACAD SCI USA, V108, P13281, DOI 10.1073/pnas.1105108108
  66. Pierpaoli C, 1996, MAGNET RESON MED, V36, P893, DOI 10.1002/mrm.1910360612
  67. Pierpaoli C, 1996, RADIOLOGY, V201, P637, DOI 10.1148/radiology.201.3.8939209
  68. Preziosa P, 2017, MULT SCLER J, V23, P1918, DOI 10.1177/1352458516689147
  69. Qiu DQ, 2008, NEUROIMAGE, V41, P223, DOI 10.1016/j.neuroimage.2008.02.023
  70. Qiu MG, 2010, BRAIN DEV-JPN, V32, P531, DOI 10.1016/j.braindev.2009.08.006
  71. Roosendaal SD, 2009, NEUROIMAGE, V44, P1397, DOI 10.1016/j.neuroimage.2008.10.026
  72. Schmithorst VJ, 2005, HUM BRAIN MAPP, V26, P139, DOI 10.1002/hbm.20149
  73. Schneider JFL, 2004, NEURORADIOLOGY, V46, P258, DOI 10.1007/s00234-003-1154-2
  74. Scholz J, 2009, NAT NEUROSCI, V12, P1370, DOI 10.1038/nn.2412
  75. Shaw P, 2008, J NEUROSCI, V28, P3586, DOI 10.1523/JNEUROSCI.5309-07.2008
  76. Simmonds DJ, 2014, NEUROIMAGE, V92, P356, DOI 10.1016/j.neuroimage.2013.12.044
  77. Smith SM, 2006, NEUROIMAGE, V31, P1487, DOI 10.1016/j.neuroimage.2006.02.024
  78. Snaidero N, 2014, J CELL SCI, V127, P2999, DOI 10.1242/jcs.151043
  79. Snook L, 2005, NEUROIMAGE, V26, P1164, DOI 10.1016/j.neuroimage.2005.03.016
  80. Snook L, 2007, NEUROIMAGE, V34, P243, DOI 10.1016/j.neuroimage.2006.07.021
  81. Soares JM, 2013, FRONT NEUROSCI-SWITZ, V7, DOI 10.3389/fnins.2013.00031
  82. Song SK, 2002, NEUROIMAGE, V17, P1429, DOI 10.1006/nimg.2002.1267
  83. Song SK, 2003, NEUROIMAGE, V20, P1714, DOI 10.1016/j.neuroimage.2003.07.005
  84. Sun SW, 2008, NEUROIMAGE, V40, P1, DOI 10.1016/j.neuroimage.2007.11.049
  85. Sun SW, 2006, MAGN RESON MED, V55, P302, DOI 10.1002/mrm.20774
  86. Taki Y, 2013, HUM BRAIN MAPP, V34, P1842, DOI 10.1002/hbm.22027
  87. Tamnes CK, 2010, CEREB CORTEX, V20, P534, DOI 10.1093/cercor/bhp118
  88. Thomason ME, 2011, ANNU REV CLIN PSYCHO, V7, P63, DOI 10.1146/annurev-clinpsy-032210-104507
  89. Uda S, 2015, DEV NEUROSCI-BASEL, V37, P182, DOI 10.1159/000373885
  90. Urger SE, 2015, J CHILD NEUROL, V30, P9, DOI 10.1177/0883073813520503
  91. Westin CF, 2002, MED IMAGE ANAL, V6, P93, DOI 10.1016/S1361-8415(02)00053-1
  92. Xie M, 2011, NEUROSCIENCE, V197, P339, DOI 10.1016/j.neuroscience.2011.09.042