Relationship between heart rate variability and subclinical thyroid disorders of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2018
Editora
Associação Brasileira de Divulgação Científica
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
DE MIRANDA, É.J.F. Peixoto
BRUNONI, A.R.
DINIZ, M.F.H.S.
RIBEIRO, A.L.P.
DANTAS, E.M.
MILL, J.G.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, v.51, n.11, e7704, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The association between subclinical thyroid dysfunctions and autonomic modulation changes has been described by many studies with conflicting results. We aimed to analyze the association between subclinical hyperthyroidism (SCHyper), subclinical hypothyroidism (SCHypo), and heart rate variability (HRV) using the baseline from ELSA-Brasil. SCHyper and SCHypo were classified by use of medication to treat thyroid disorders, thyrotropin levels respectively above and under the reference range, and normal free thyroxine levels. For HRV, the participants underwent 10 min in supine position and the R-R intervals of the final 5 min were selected for analysis. We first used linear regression models to report crude data and then, multivariate adjustment for sociodemographic (age, sex, and race) and cardiovascular risk factors (hypertension, dyslipidemia, diabetes, smoking, body mass index, use of alcohol, and leisure physical activity) using the euthyroid group as reference. From 9270 subjects (median age, 50; interquartile range: 44–56), 8623 (93.0%) were classified as euthyroid, 136 (1.5%) as SCHyper, and 511 (5.5%) as SCHypo. Compared to euthyroid subjects, SCHyper participants presented significantly higher heart rate (68.8 vs 66.5 for euthyroidism, P=0.007) and shorter R-R intervals (871.4 vs 901.6, P=0.007). Although SCHyper was associated with lower standard deviation of NN interval (SDNN) (β: –0.070; 95% confidence interval (95%CI): –0.014 to –0.009) and low-frequency (LF) (β: –0.242, 95%CI: –0.426 to –0.058) compared to the euthyroid group, these differences lost significance after multivariate adjustment for confounders. No significant differences were found for HRV in SCHypo. No association was found between HRV and SCHyper or SCHypo compared to euthyroid subjects in this sample of apparently healthy subjects.
Palavras-chave
Subclinical hypothyroidism, Subclinical hyperthyroidism, Heart rate variability, Autonomic nervous system
Referências
  1. Aquino EML, 2012, AM J EPIDEMIOL, V175, P315, DOI 10.1093/aje/kwr294
  2. Asvold BO, 2012, CLIN ENDOCRINOL, V77, P911, DOI 10.1111/j.1365-2265.2012.04477.x
  3. Bensenor IM, 2013, REV SAUDE PUBL, V47, P37, DOI 10.1590/S0034-8910.2013047003780
  4. Billman GE, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00026
  5. Brunoni AR, 2013, INT J NEUROPSYCHOPH, V16, P1937, DOI 10.1017/S1461145713000497
  6. Burggraaf J, 2001, AM J PHYSIOL-ENDOC M, V281, pE190
  7. Camm AJ, 1996, CIRCULATION, V93, P1043
  8. Celik A, 2011, ANN NONINVAS ELECTRO, V16, P344, DOI 10.1111/j.1542-474X.2011.00461.x
  9. Chaker L, 2017, J CLIN ENDOCR METAB, V102, P2853, DOI 10.1210/jc.2017-00410
  10. Chen JL, 2006, CLIN ENDOCRINOL, V64, P611, DOI 10.1111/j.1365-2265.2006.02514.x
  11. Collet TH, 2012, ARCH INTERN MED, V172, P799, DOI 10.1001/archinternmed.2012.402
  12. Dantas EM, 2012, COMPUT BIOL MED, V42, P164, DOI 10.1016/j.compbiomed.2011.11.004
  13. Falcone C, 2014, INT HEART J, V55, P33, DOI 10.1536/ihj.13-198
  14. Fedeli LG, 2013, REV SAUDE PUBL, V47, P63, DOI 10.1590/S0034-8910.2013047003807
  15. Floriani C, 2018, EUR HEART J, V39, P503, DOI 10.1093/eurheartj/ehx050
  16. Foley CM, 2001, AM J PHYSIOL-HEART C, V280, pH2061
  17. Galetta F, 2006, BIOMED PHARMACOTHER, V60, P425, DOI 10.1016/j.biopha.2006.07.009
  18. Galetta F, 2010, BIOMED PHARMACOTHER, V64, P546, DOI 10.1016/j.biopha.2009.10.001
  19. Galetta F, 2008, EUR J ENDOCRINOL, V158, P85, DOI 10.1530/EJE-07-0357
  20. Gautam Sujata, 2003, Indian Journal of Physiology and Pharmacology, V47, P164
  21. Goichot B, 2004, J ENDOCRINOL INVEST, V27, P348, DOI 10.1007/BF03351060
  22. Goldstein DS, 2011, EXP PHYSIOL, V96, P1255, DOI 10.1113/expphysiol.2010.056259
  23. Hollowell JG, 2002, J CLIN ENDOCR METAB, V87, P489, DOI 10.1210/jc.87.2.489
  24. Langen VL, 2018, CLIN ENDOCRINOL, V88, P105, DOI 10.1111/cen.13472
  25. Maor E, 2013, THYROID, V23, P1226, DOI 10.1089/thy.2013.0043
  26. Mill JG, 2013, REV SAUDE PUBL, V47, P54, DOI 10.1590/S0034-8910.2013047003851
  27. Mourot L, 2004, EUR J APPL PHYSIOL, V92, P508, DOI 10.1007/s00421-004-1119-0
  28. Naghavi M, 2017, LANCET, V390, P1151, DOI 10.1016/S0140-6736(17)32152-9
  29. Nanchen D, 2012, J CLIN ENDOCR METAB, V97, P852, DOI 10.1210/jc.2011-1978
  30. Petretta M, 2001, EUR J ENDOCRINOL, V145, P691, DOI 10.1530/eje.0.1450691
  31. Portella RB, 2007, CLIN ENDOCRINOL, V67, P290, DOI 10.1111/j.1365-2265.2007.02879.x
  32. Rahman F, 2011, CLIN AUTON RES, V21, P133, DOI 10.1007/s10286-010-0098-y
  33. Rodondi N, 2008, J AM COLL CARDIOL, V52, P1152, DOI 10.1016/j.jacc.2008.07.009
  34. Rodondi N, 2010, JAMA-J AM MED ASSOC, V304, P1365, DOI 10.1001/jama.2010.1361
  35. Sahin I, 2005, J ENDOCRINOL INVEST, V28, P209, DOI 10.1007/BF03345374
  36. Sawin CT, 2002, THYROID, V12, P501, DOI 10.1089/105072502760143881
  37. Schmidt MI, 2014, DIABETOL METAB SYNDR, V6, DOI 10.1186/1758-5996-6-123
  38. Surks MI, 2004, JAMA-J AM MED ASSOC, V291, P228, DOI 10.1001/jama.291.2.228
  39. 2018, IPAQ