Nonlinear Flow Sensor Calibration with an Accurate Syringe

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
SENSORS, v.18, n.7, article ID 2163, 9p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Flow sensors are required for monitoring patients on mechanical ventilation and in respiratory research. Proper calibration is important for ensuring accuracy and can be done with a precision syringe. This procedure, however, becomes complex for nonlinear flow sensors, which are commonly used. The objective of the present work was to develop an algorithm to allow the calibration of nonlinear flow sensors using an accurate syringe. We first noticed that a power law equation could properly fit the pressure-flow relationship of nonlinear flow sensors. We then developed a software code to estimate the parameters for this equation using a 3 L syringe (calibration syringe). Finally, we tested the performance of a calibrated flow sensor using a different 3 L syringe (testing syringe) and a commercially available spirometer. After calibration, the sensor had a bias ranging from -1.7% to 3.0% and precision from 0.012 L to 0.039 L for volumes measured with the 3 L testing syringe. Calibrated sensor performance was at least as good as the commercial sensor. This calibration procedure can be done at the bedside for both clinical and research purposes, therefore improving the accuracy of nonlinear flow sensors.
Palavras-chave
flow sensor, calibration, mechanical ventilation, nonlinear
Referências
  1. BEYDON L, 1992, INTENS CARE MED, V18, P32, DOI 10.1007/BF01706423
  2. BLAND JM, 1986, LANCET, V1, P307
  3. Brower RG, 2000, NEW ENGL J MED, V342, P1301
  4. Cannon ML, 2000, AM J RESP CRIT CARE, V162, P2109, DOI 10.1164/ajrccm.162.6.9906112
  5. Castle RA, 2002, CRIT CARE MED, V30, P2566, DOI 10.1097/01.CCM.0000034675.10801.2A
  6. Dellaca RL, 2017, BREATHE, V13, P84, DOI 10.1183/20734735.007817
  7. Eichacker PQ, 2002, AM J RESP CRIT CARE, V166, P1510, DOI 10.1164/rrcm.200208-956OC
  8. Fraden J, 2010, HANDBOOK OF MODERN SENSORS: PHYSICS, DESIGNS, AND APPLICATIONS, FOURTH EDITION, P1, DOI 10.1007/978-1-4419-6466-3
  9. Garnier M, 2015, BRIT J ANAESTH, V115, P89, DOI 10.1093/bja/aev028
  10. Govoni L, 2012, MED DEVICES-EVID RES, V5, P111, DOI 10.2147/MDER.S35864
  11. *ISO, 57251 ISO
  12. Jewitt H, 2012, ANAEST INTENS CARE M, V13, P106, DOI 10.1016/j.mpaic.2011.12.013
  13. Kreit JW, 1996, AM J RESP CRIT CARE, V154, P913, DOI 10.1164/ajrccm.154.4.8887585
  14. Lyazidi A, 2010, INTENS CARE MED, V36, P2074, DOI 10.1007/s00134-010-2044-9
  15. Miller MR, 2005, EUR RESPIR J, V26, P319, DOI 10.1183/09031936.05.00034805
  16. Rhodes A, 2017, CRIT CARE MED, V45, P486, DOI 10.1097/CCM.0000000000002255
  17. Schena E, 2015, MED ENG PHYS, V37, P257, DOI 10.1016/j.medengphy.2015.01.010
  18. Schena E, 2012, MEASUREMENT, V45, P2064, DOI 10.1016/j.measurement.2012.05.009
  19. Tang YQ, 2003, J APPL PHYSIOL, V95, P571, DOI 10.1152/japplphysiol.00196.2003
  20. Tassaux D, 1999, AM J RESP CRIT CARE, V160, P22, DOI 10.1164/ajrccm.160.1.9807127
  21. The ARDS Definition Task Force, 2012, JAMA-J AM MED ASSOC, V307, P1, DOI 10.1001/JAMA.2012.5669
  22. Wallon G, 2013, BRIT J ANAESTH, V110, P1045, DOI 10.1093/bja/aes594
  23. YEH MP, 1984, J APPL PHYSIOL, V56, P1423