Spatial trends in congenital malformations and stream water chemistry in Southern Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
IBANEZ, Humberto C.
MELANDA, Viviane S.
GERBER, Viviane K. Q.
LICHT, Otavio A. B.
IBANEZ, Marilea V. C.
AGUIAR JUNIOR, Terencio R.
MELLO, Rosiane G.
KOMECHEN, Heloisa
ANDRADE, Diancarlos P.
PICHARSKI, Gledson L.
Citação
SCIENCE OF THE TOTAL ENVIRONMENT, v.650, p.1278-1291, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The incidence of variable congenital malformation (CM) among 399 municipalities in the state of Parana, southern Brazil, suggests the etiological role of environmental factors. This study examined a) environmental concentrations of chlorine anions (Cl-) associated with organochlorines (OCs) and b) associations between these chemicals and agricultural output with CMs using a geographical information system. In one of the three years during the sampling period (2008, 2009 or 2010) Cl-, dichlorodiphenyltrichloroethane (p,p'-DDT), dichlorodiphenyldichloroethylene (p, p'-DDE), dichlorodiphenyldichloroethane (p,p'-DDD), and endosulfan levels were measured in 465 (465/736, 63%) catchment basins. Agricultural outputs for crops during 2006-2010 were also evaluated (t/km(2)). Further, CM kernel density for the 399 municipalities in Parana during 2007-2014 was investigated. Cl- levels increased significantly in one of the three years (2008, 2009 or 2010) in western catchment basins, compared to 1996 (p < 0.0001). The municipalities were divided according to the obtained Cl- levels, where sub-region C2 (central-southern) < 1.8mg/L <= sub-regions C1 (northern-western) and C3 (eastern-southern). We identified 8756 cases of CMs among 1,221,287 newborns (NB) in all sub-regions. C1 had higher DDT-DDE-DDD (p,p'-DDT + p,p'-DDE + p,p'-DDD) concentrations, agricultural output, and CM kernel density. C2 and C3 had minor agricultural outputs (per square kilometer) and CM densities. A 2.96 mg/L increase in Cl- between sub-regions C1 and C2 was co-localized with a 45% increase in CM density (spatial relative risk = 1.45, CI 95%: 1.36-1.55). C1 had the highest log likelihood ratios (p = 0.001) identified via SaTScan clustering analyses. Organochlorines and other toxic chlorinated chemicals may contribute to CMs in humans, and these chemicals are ultimately transformed and release Cl- in rivers. Higher Cl- levels were correlated significantly with higher agricultural productivity, DDT-DDE-DDD levels, and CMs in some parts of the northern and western sub-regions (C1). (C) 2018 Published by Elsevier B.V.
Palavras-chave
Agricultural output, Pesticide, Organochlorine, Chloride, Congenital anomaly, Spatial analysis
Referências
  1. Aguiar T, 2015, ENVIRON SCI POLLUT R, V22, P10618, DOI 10.1007/s11356-015-4281-5
  2. Al-Saleh I, 2012, SCI TOTAL ENVIRON, V416, P62, DOI 10.1016/j.scitotenv.2011.11.020
  3. ANSELIN L, 1988, GEOGR ANAL, V20, P1, DOI 10.1111/j.1538-4632.1988.tb00159.x
  4. Anselin L., 2003, INTRO SPATIAL REGRES
  5. APHA, 1992, DET AN ION CHROM CHE, p4110B
  6. Bergkvist C, 2012, CHEMOSPHERE, V88, P784, DOI 10.1016/j.chemosphere.2012.03.083
  7. Bergonzi R, 2009, CHEMOSPHERE, V76, P747, DOI 10.1016/j.chemosphere.2009.05.026
  8. Bertrand G, 2016, J CONTAM HYDROL, V192, P165, DOI 10.1016/j.jconhyd.2016.07.008
  9. Best D. J., 1975, J R STAT SOC C, V24, P377, DOI 10.2307/2347111
  10. Bhattacharya B, 2003, ENVIRON INT, V29, P587, DOI 10.1016/S0160-4120(03)00016-3
  11. Bivand R., 2015, COMP IMPLEMENTATIONS, DOI [10.18637/jss.v063.i18, DOI 10.18637/JSS.V063.I18]
  12. Bivand R., 2008, APPL SPATIAL DATA AN, P258, DOI 10.1007/978-0-387-78171-6
  13. Bivand R., 2015, TOOLS READING HANDLI, P8
  14. Brent RL, 2004, PEDIATRICS, V113, P957
  15. Chanon KE, 2003, INT J HYG ENVIR HEAL, V206, P387, DOI 10.1078/1438-4639-00235
  16. Cliff A. D., 1981, SPATIAL PROCESSES MO, DOI [10.1080/00690805.1983.10438243, DOI 10.1080/00690805.1983.10438243]
  17. Cohn BA, 2003, LANCET, V361, P2205, DOI 10.1016/S0140-6736(03)13776-2
  18. Cortes DR, 1998, ENVIRON SCI TECHNOL, V32, P1920, DOI 10.1021/es970955q
  19. de Siqueira MT, 2010, B ENVIRON CONTAM TOX, V84, P647, DOI 10.1007/s00128-010-0027-8
  20. DEANDREA MM, 1991, PESQUI AGROPECU BRAS, V26, P1691
  21. Dimond JB, 1996, ENVIRON POLLUT, V92, P227, DOI 10.1016/0269-7491(95)00059-3
  22. Dolk H, 2003, BRIT MED BULL, V68, P25, DOI 10.1093/bmb/ldg024
  23. EDGELL KW, 1994, J AOAC INT, V77, P1253
  24. Egbe A, 2015, ETHNIC DIS, V25, P226
  25. Eskenazi B, 2009, ENVIRON HEALTH PERSP, V117, P1359, DOI 10.1289/ehp.11748
  26. [EURL European Commission], 2006, SANCO102322006 EURL, P30
  27. Fares Rafaelle C G, 2015, Biomed Res Int, V2015, P321873, DOI 10.1155/2015/321873
  28. Forand SP, 2002, HEALTH PLACE, V8, P191, DOI 10.1016/S1353-8292(01)00037-5
  29. Google Developers, 2017, GOOGL MAPS GEOC API
  30. Grandjean P, 2014, LANCET NEUROL, V13, P330, DOI 10.1016/S1474-4422(13)70278-3
  31. Hamilton N., 2017, R PACKAGE GGTERN EXT
  32. HOLLANDER M., 1973, NONPARAMETRIC STAT M, P185
  33. IBGE, 2016, SIST IBGE REC AUT SI
  34. IPARDES, 2017, BAS DAD EST BDEWEB
  35. IPCS, 1989, EVALUATION, V8
  36. Janitz AE, 2016, BIRTH DEFECTS RES A, V106, P633, DOI 10.1002/bdra.23494
  37. Kalra S, 2016, REPROD TOXICOL, V66, P56, DOI 10.1016/j.reprotox.2016.09.005
  38. Kannan K, 2004, ENVIRON POLLUT, V131, P425, DOI 10.1016/j.envpol.2004.03.004
  39. Kulldorff M, 1999, STAT IND TECHNOL, P303
  40. Kulldorff M, 2006, STAT MED, V25, P3929, DOI 10.1002/sim.2490
  41. Lacorte S, 2000, ANAL CHEM, V72, P1430, DOI 10.1021/ac991080w
  42. Licht O. A. B., 2005, TERRAE, V2, P9
  43. MapServer, 2017, OP SOURC PLATF PUBL
  44. Matsushima A, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19051377
  45. MINEROPAR, 2001, ATL GEOQ EST PAR, P80
  46. Momen NC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173355
  47. Naso B, 2004, SCI TOTAL ENVIRON, V328, P83, DOI 10.1016/j.scitotenv.2004.02.006
  48. Patandin S, 1999, J PEDIATR-US, V134, P33, DOI 10.1016/S0022-3476(99)70369-0
  49. Pei LL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139452
  50. PETERSON JE, 1964, TOXICOL APPL PHARM, V6, P321, DOI 10.1016/0041-008X(64)90073-0
  51. PostGIS, 2017, SPAT GEOGR OBJ POSTG
  52. QGIS, 2016, QUANT GIS GEOGR INF
  53. R Development Core Team, 2011, R LANG ENV STAT COMP
  54. Rocha DAM, 2016, SCI TOTAL ENVIRON, V572, P177, DOI 10.1016/j.scitotenv.2016.07.179
  55. Rubo J. P., 2016, SPECIAL MONOGRAPH
  56. Santos Joice Sifuentes dos, 2006, Cienc. Rural, V36, P630, DOI 10.1590/S0103-84782006000200042
  57. Svechkina A, 2017, SCI TOTAL ENVIRON, V595, P413, DOI 10.1016/j.scitotenv.2017.03.222
  58. Tiefelsdorf M, 1999, ENVIRON PLANN A, V31, P165, DOI 10.1068/a310165
  59. USEPA (United States Environmental Protection Agency), 2006, INV SOURC ENV REL DI
  60. Venables W. N., 2002, MODERN APPL STAT S, P107
  61. Wang YZ, 2018, SCI TOTAL ENVIRON, V618, P419, DOI 10.1016/j.scitotenv.2017.11.066
  62. WHO (World Health Organization), 2003, CHLOR DRINK WAT BACK
  63. Wnuk A, 2016, NEUROTOX RES, V29, P155, DOI 10.1007/s12640-015-9572-6
  64. Yu HY, 2011, SCI TOTAL ENVIRON, V409, P447, DOI 10.1016/j.scitotenv.2010.10.019
  65. ZHANG WJ, 2018, PROC INT ACAD ECOL E, V8, P1