Cortical bone loss is an early feature of nonradiographic axial spondyloarthritis

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2018
Editora
BMC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
NEUMANN, Anna
HASCHKA, Judith
KLEYER, Arnd
SCHUSTER, Louis
ENGLBRECHT, Matthias
BERLIN, Andreas
SIMON, David
MUSCHITZ, Christian
KOCIJAN, Roland
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
ARTHRITIS RESEARCH & THERAPY, v.20, article ID 202, 11p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: In the present study, we investigated bone geometry, microstructure, and volumetric bone mineral density (vBMD) in a cohort of patients with nonradiographic axial spondyloarthritis (nr-axSpA) in order to define the early bone changes occurring in axial spondyloarthritis (axSpA) and to define potential factors for deterioration of bone microstructure. Methods: Patients with axSpA (n = 107) and healthy control subjects (n = 50) of similar age and sex were assessed for geometric, volumetric, and microstructural parameters of bone using high-resolution peripheral quantitative computed tomography (HR-pQCT) at the radius. Additionally, demographic and disease-specific characteristics of patients with axSpA were recorded. Results: Patients with nr-axSpA and control subjects were comparable in age, sex, and body mass index. Geometric and microstructural analysis by HR-pQCT revealed a significantly reduced cortical area (p = 0.022) and cortical thickness (p = 0.006) in patients with nr-axSpA compared with control subjects. Total and cortical vBMD were significantly reduced in patients with nr-axSpA (p=0.042 and p = 0.007, respectively), whereas there was no difference in trabecular vBMD. Patients with a short disease duration (< 2 years; n = 46) also showed significant reduction of cortical thickness and cortical area compared with control subjects. Patients with disease duration > 2 years (n = 55) additionally developed a decrease of cortical and total vBMD. Multiple regression models identified male sex to be associated with lower cortical vBMD and female sex to be associated with lower trabecular vBMD. Conclusions: Bone microstructure in patients with nr-axSpA is characterized primarily by deterioration of cortical bone. Cortical bone loss starts early and is evident within the first 2 years of the disease.
Palavras-chave
Spondyloarthritis, Bone loss, Computed tomography
Referências
  1. Akgol G, 2014, RHEUMATOLOGY, V53, P497, DOI 10.1093/rheumatology/ket385
  2. Allali F, 2003, ANN RHEUM DIS, V62, P347, DOI 10.1136/ard.62.4.347
  3. Amstrup AK, 2016, J BONE MINER METAB, V34, P638, DOI 10.1007/s00774-015-0708-9
  4. Arends S, 2012, ARTHRITIS RES THER, V14, DOI 10.1186/ar3823
  5. Boutroy S, 2005, J CLIN ENDOCR METAB, V90, P6508, DOI 10.1210/jc.2005-1258
  6. Briot K, 2013, ANN RHEUM DIS, V72, P1914, DOI 10.1136/annrheumdis-2012-201845
  7. CARTER DR, 1984, CALCIFIED TISSUE INT, V36, pS19, DOI 10.1007/BF02406129
  8. Cheung AM, 2013, CURR OSTEOPOROS REP, V11, P136, DOI 10.1007/s11914-013-0140-9
  9. de Waard EAC, 2018, CALCIFIED TISSUE INT, V103, P252, DOI 10.1007/s00223-018-0416-2
  10. DEVOGELAER JP, 1992, ARTHRITIS RHEUM, V35, P1062, DOI 10.1002/art.1780350911
  11. DONNELLY S, 1994, ANN RHEUM DIS, V53, P117, DOI 10.1136/ard.53.2.117
  12. Engelke K, 2013, CURR OSTEOPOROS REP, V11, P246, DOI 10.1007/s11914-013-0147-2
  13. Haroon NN, 2015, ARTHRITIS RES THER, V17, DOI 10.1186/s13075-015-0873-1
  14. Haschka J, 2016, J CROHNS COLITIS, V10, P532, DOI 10.1093/ecco-jcc/jjw012
  15. JEE WSS, 1990, BONE, V11, P253, DOI 10.1016/8756-3282(90)90078-D
  16. Kang KY, 2013, RHEUMATOLOGY, V52, P718, DOI 10.1093/rheumatology/kes364
  17. Karberg K, 2005, J RHEUMATOL, V32, P1290
  18. Khosla S, 2006, J BONE MINER RES, V21, P124, DOI 10.1359/JBMR.050916
  19. Kilic E, 2015, WORLD J ORTHOP, V6, P298, DOI 10.5312/wjo.v6.i2.298
  20. Klingberg E, 2013, ARTHRITIS RES THER, V15, DOI 10.1186/ar4368
  21. Klingberg E, 2012, J RHEUMATOL, V39, P1987, DOI 10.3899/jrheum.120316
  22. Klingberg E, 2012, ARTHRITIS RES THER, V14, DOI 10.1186/ar3833
  23. Kocijan R, 2015, J BONE MINER RES, V30, P1775, DOI 10.1002/jbmr.2521
  24. Kocijan R, 2014, ANN RHEUM DIS, V73, P2022, DOI 10.1136/annrheumdis-2013-203791
  25. Kotake S, 1999, J CLIN INVEST, V103, P1345, DOI 10.1172/JCI5703
  26. Lange U, 2005, RHEUMATOL INT, V26, P115, DOI 10.1007/s00296-004-0515-4
  27. Martin RB, 2002, BONE, V30, P8, DOI 10.1016/S8756-3282(01)00620-2
  28. Meirelles ES, 1999, CLIN RHEUMATOL, V18, P364, DOI 10.1007/s100670050120
  29. Schett G, 2010, NAT REV ENDOCRINOL, V6, P698, DOI 10.1038/nrendo.2010.190
  30. Seeman E, 2006, NEW ENGL J MED, V354, P2250, DOI 10.1056/NEJMra053077
  31. Simon D, 2017, J BONE MINER RES, V32, P722, DOI 10.1002/jbmr.3025
  32. SINGH A, 1995, SOUTHERN MED J, V88, P939, DOI 10.1097/00007611-199509000-00010
  33. Speden DJ, 2002, J RHEUMATOL, V29, P516
  34. Stein EM, 2014, J BONE MINER RES, V29, P1101, DOI 10.1002/jbmr.2144
  35. Sutter S, 2014, J CLIN ENDOCR METAB, V99, P4231, DOI 10.1210/jc.2014-2177
  36. Szulc P, 2011, J BONE MINER RES, V26, P1358, DOI 10.1002/jbmr.319
  37. Uluckan O, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aad8996