CSF cytokine profile in MOG-IgG plus neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications

Nenhuma Miniatura disponível
Citações na Scopus
125
Tipo de produção
article
Data de publicação
2018
Editora
BMJ PUBLISHING GROUP
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
KANEKO, Kimihiko
NAKASHIMA, Ichiro
OGAWA, Ryo
AKAISHI, Tetsuya
TAKAI, Yoshiki
NISHIYAMA, Shuhei
TAKAHASHI, Toshiyuki
MISU, Tatsuro
KURODA, Hiroshi
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, v.89, n.9, p.927-936, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective To evaluate cerebrospinal fluid (CSF) cytokine profiles in myelin oligodendrocyte glycoprotein IgG-positive (MOG-IgG+) disease in adult and paediatric patients. Methods In this cross-sectional study, we measured 27 cytokines in the CSF of MOG-IgG+ disease in acute phase before treatment (n=29). The data were directly compared with those in aquaporin-4 antibody-positive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) (n=20), multiple sclerosis (MS) (n=20) and non-inflammatory controls (n=14). Results In MOG-IgG+ disease, there was no female preponderance and the ages were younger (mean 18 years, range 3-68; 15 were below 18 years) relative to AQP4-IgG+ NMOSD (41, 15-77) and MS (34, 17-48). CSF cell counts were higher and oligoclonal IgG bands were mostly negative in MOG-IgG+ disease and AQP4-IgG+ NMOSD compared with MS. MOG-IgG+ disease had significantly elevated levels of interleukin (IL)-6, IL-8, granulocyte-colony stimulating factor and granulocyte macrophage-colony stimulating factor, interferon-gamma, IL-10, IL-1 receptor antagonist, monocyte chemotactic protein-1 and macrophage inflammatory protein-1 alpha as compared with MS. No cytokine in MOG-IgG+ disease was significantly different from AQP4-IgG+ NMOSD. Moreover many elevated cytokines were correlated with each other in MOG-IgG+ disease and AQP4-IgG+ NMOSD but not in MS. No difference in the data was seen between adult and paediatric MOG-IgG+ cases. Conclusions The CSF cytokine profile in the acute phase of MOG-IgG+ disease is characterised by coordinated upregulation of T helper 17 (Th17) and other cytokines including some Th1-related and regulatory T cells-related ones in adults and children, which is similar to AQP4-IgG+ NMOSD but clearly different from MS. The results suggest that as with AQP4-IgG+ NMOSD, some disease-modifying drugs for MS may be ineffective in MOG-IgG+ disease while they may provide potential therapeutic targets.
Palavras-chave
Referências
  1. Akaishi T, 2016, J NEUROL NEUROSUR PS, V87, P446, DOI 10.1136/jnnp-2014-310206
  2. Berg CT, 2017, J NEUROINFLAMM, V14, DOI 10.1186/s12974-017-0899-1
  3. Brilot F, 2009, ANN NEUROL, V66, P833, DOI 10.1002/ana.21916
  4. Dale RC, 2014, NEUROL-NEUROIMMUNOL, V1, DOI 10.1212/NXI.0000000000000012
  5. Dardalhon V, 2008, NAT IMMUNOL, V9, P1347, DOI 10.1038/ni.1677
  6. Di Pauli F, 2015, NEUROL-NEUROIMMUNOL, V2, DOI 10.1212/NXI.0000000000000175
  7. Elyaman W, 2009, P NATL ACAD SCI USA, V106, P12885, DOI 10.1073/pnas.0812530106
  8. Ferretti S, 2003, J IMMUNOL, V170, P2106, DOI 10.4049/jimmunol.170.4.2106
  9. Gahlen A, 2017, NEUROL-NEUROIMMUNOL, V4, DOI 10.1212/NXI.0000000000000363
  10. Hacohen Y, 2015, NEUROL-NEUROIMMUNOL, V2, DOI 10.1212/NXI.0000000000000081
  11. Horellou P, 2015, J NEUROIMMUNOL, V289, P1, DOI 10.1016/j.jneuroim.2015.10.002
  12. Ikeda K, 2015, MULT SCLER J, V21, P656, DOI 10.1177/1352458514551455
  13. Jarius S, 2016, J NEUROINFLAMM, V13, DOI 10.1186/s12974-016-0718-0
  14. Jarius S, 2016, MULT SCLER J, V22, P1541, DOI 10.1177/1352458515622986
  15. JOHNS TG, 1995, J IMMUNOL, V154, P5536
  16. Johns TG, 1999, J NEUROCHEM, V72, P1, DOI 10.1046/j.1471-4159.1999.0720001.x
  17. Jurynczyk M, 2017, BRAIN, V140, P617, DOI 10.1093/brain/aww350
  18. Kaneko K, 2016, J NEUROL NEUROSUR PS, V87, P1257, DOI 10.1136/jnnp-2015-312676
  19. Kitley J, 2014, JAMA NEUROL, V71, P276, DOI 10.1001/jamaneurol.2013.5857
  20. Kothur K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149411
  21. Kothur K, 2016, CYTOKINE, V77, P227, DOI 10.1016/j.cyto.2015.10.001
  22. LININGTON C, 1988, AM J PATHOL, V130, P443
  23. Mader S, 2011, J NEUROINFLAMM, V8, DOI 10.1186/1742-2094-8-184
  24. Min JH, 2012, MULT SCLER J, V18, P113, DOI 10.1177/1352458511431973
  25. Miyazaki Teiichiro, 2016, Rinsho Shinkeigaku, V56, P265, DOI 10.5692/clinicalneurol.cn-000756
  26. Peschl P, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00529
  27. Polman CH, 2011, ANN NEUROL, V69, P292, DOI 10.1002/ana.22366
  28. Probstel AK, 2011, NEUROLOGY, V77, P580, DOI 10.1212/WNL.0b013e318228c0b1
  29. Ramanathan S, 2018, J NEUROL NEUROSUR PS, V89, P127, DOI 10.1136/jnnp-2017-316880
  30. Ramanathan S, 2016, AUTOIMMUN REV, V15, P307, DOI 10.1016/j.autrev.2015.12.004
  31. Saadoun S, 2014, ACTA NEUROPATHOL COM, V2, DOI 10.1186/2051-5960-2-35
  32. Sato DK, 2014, NEUROLOGY, V82, P474, DOI 10.1212/WNL.0000000000000101
  33. Shimizu J, 2010, NEUROLOGY, V75, P1423, DOI 10.1212/WNL.0b013e3181f8832e
  34. Spadaro M, 2016, NEUROL-NEUROIMMUNOL, V3, DOI 10.1212/NXI.0000000000000257
  35. Spadaro M, 2015, ANN CLIN TRANSL NEUR, V2, P295, DOI 10.1002/acn3.164
  36. Takano R, 2010, NEUROLOGY, V75, P208, DOI 10.1212/WNL.0b013e3181e2414b
  37. Uzawa A, 2010, MULT SCLER, V16, P1443, DOI 10.1177/1352458510379247
  38. Veldhoen M, 2008, NAT IMMUNOL, V9, P1341, DOI 10.1038/ni.1659
  39. Waters P, 2015, NEUROL-NEUROIMMUNOL, V2, DOI 10.1212/NXI.0000000000000089
  40. Wingerchuk DM, 2015, NEUROLOGY, V85, P177, DOI 10.1212/WNL.0000000000001729