Global, regional, and national burden of tuberculosis, 1990-2016: results from the Global Burden of Diseases, Injuries, and Risk Factors 2016 Study

Carregando...
Imagem de Miniatura
Citações na Scopus
143
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
KYU, Hmwe Hmwe
MADDISON, Emilie R.
HENRY, Nathaniel J.
LEDESMA, Jorge R.
WIENS, Kirsten E.
REINER JR., Robert
BIEHL, Molly H.
SHIELDS, Chloe
OSGOOD-ZIMMERMAN, Aaron
ROSS, Jennifer M.
Citação
LANCET INFECTIOUS DISEASES, v.18, n.12, p.1329-1349, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Although a preventable and treatable disease, tuberculosis causes more than a million deaths each year. As countries work towards achieving the Sustainable Development Goal (SDG) target to end the tuberculosis epidemic by 2030, robust assessments of the levels and trends of the burden of tuberculosis are crucial to inform policy and programme decision making. We assessed the levels and trends in the fatal and non-fatal burden of tuberculosis by drug resistance and HIV status for 195 countries and territories from 1990 to 2016. Methods We analysed 15 943 site-years of vital registration data, 1710 site-years of verbal autopsy data, 764 site-years of sample-based vital registration data, and 361 site-years of mortality surveillance data to estimate mortality due to tuberculosis using the Cause of Death Ensemble model. We analysed all available data sources, including annual case notifications, prevalence surveys, population-based tuberculin surveys, and estimated tuberculosis cause-specific mortality to generate internally consistent estimates of incidence, prevalence, and mortality using DisMod-MR 2.1, a Bayesian meta-regression tool. We assessed how the burden of tuberculosis differed from the burden predicted by the Socio-demographic Index (SDI), a composite indicator of income per capita, average years of schooling, and total fertility rate. Findings Globally in 2016, among HIV-negative individuals, the number of incident cases of tuberculosis was 9.02 million (95% uncertainty interval [UI] 8.05-10.16) and the number of tuberculosis deaths was 1.21 million (1.16-1.27). Among HIV-positive individuals, the number of incident cases was 1.40 million (1.01-1.89) and the number of tuberculosis deaths was 0.24 million (0.16-0.31). Globally, among HIV-negative individuals the agestandardised incidence of tuberculosis decreased annually at a slower rate (-1.3% [-1.5 to-1.2]) than mortality did (-4.5% [-5.0 to-4.1]) from 2006 to 2016. Among HIV-positive individuals during the same period, the rate of change in annualised age-standardised incidence was-4.0% (-4.5 to -3.7) and mortality was-8.9% (-9.5 to-8.4). Several regions had higher rates of age-standardised incidence and mortality than expected on the basis of their SDI levels in 2016. For drug-susceptible tuberculosis, the highest observed-to-expected ratios were in southern sub-Saharan Africa (13.7 for incidence and 14.9 for mortality), and the lowest ratios were in high-income North America (0.4 for incidence) and Oceania (0.3 for mortality). For multidrug-resistant tuberculosis, eastern Europe had the highest observed-to-expected ratios (67.3 for incidence and 73.0 for mortality), and high-income North America had the lowest ratios (0.4 for incidence and 0.5 for mortality). Interpretation If current trends in tuberculosis incidence continue, few countries are likely to meet the SDG target to end the tuberculosis epidemic by 2030. Progress needs to be accelerated by improving the quality of and access to tuberculosis diagnosis and care, by developing new tools, scaling up interventions to prevent risk factors for tuberculosis, and integrating control programmes for tuberculosis and HIV. Copyright 2018 (c) The Author(s).
Palavras-chave
Referências
  1. Albert H, 2016, EUR RESPIR J, V48, P516, DOI 10.1183/13993003.00543-2016
  2. [Anonymous], 1974, Bull World Health Organ, V51, P473
  3. Armstrong DB, 1918, AM REV TUBERC, V2, P195
  4. Armstrong DB, 1921, AM REV TUBERC, V4, P908
  5. Barber RM, 2017, LANCET, V390, P231, DOI 10.1016/S0140-6736(17)30818-8
  6. Dodd PJ, 2017, LANCET GLOB HEALTH, V5, pE898, DOI [10.1016/S2214-109X(17)30289-9, 10.1016/s2214-109x(17)30289-9]
  7. Dodd PJ, 2014, LANCET GLOB HEALTH, V2, pE453, DOI 10.1016/S2214-109X(14)70245-1
  8. Dowell SF, 2016, NATURE, V540, P189, DOI 10.1038/540189a
  9. Flaxman AD, 2015, INTEGRATIVE METAREGR
  10. Floyd K, 2018, INT J TUBERC LUNG D, V22, P723, DOI 10.5588/ijtld.17.0835
  11. Foreman KJ, 2012, POPUL HEALTH METR, V10, DOI 10.1186/1478-7954-10-1
  12. Fox GJ, 2018, NEW ENGL J MED, V378, P221, DOI 10.1056/NEJMoa1700209
  13. Glaziou P, 2017, METHODS USED WHO EST
  14. Graham SM, 2014, LANCET, V383, P1605, DOI 10.1016/S0140-6736(14)60420-7
  15. Hay SI, 2017, LANCET, V390, P1260, DOI 10.1016/S0140-6736(17)32130-X
  16. Ho J, 2016, INT J MYCOBACT, V5, P374, DOI 10.1016/j.ijmyco.2016.09.023
  17. James SL, 2011, POPUL HEALTH METR, V9, DOI 10.1186/1478-7954-9-31
  18. Kassebaum NJ, 2016, LANCET, V388, P1603, DOI 10.1016/S0140-6736(16)31460-X
  19. Lonnroth K, 2014, LANCET DIABETES ENDO, V2, P730, DOI 10.1016/S2213-8587(14)70109-3
  20. Lozano R, 2012, LANCET, V380, P2095, DOI 10.1016/S0140-6736(12)61728-0
  21. Lozano R, 2011, POPUL HEALTH METR, V9, DOI 10.1186/1478-7954-9-32
  22. Mesfin YM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0082235
  23. Ministry of Health and Social Development of the Republic of Kazakhstan, 2016, INC TUB DECR TWIC KA
  24. Morishita F, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171310
  25. Murray CJL, 2018, LANCET INFECT DIS, V18, P261, DOI 10.1016/S1473-3099(17)30703-X
  26. Murray CJL, 2014, LANCET, V384, P1005, DOI 10.1016/S0140-6736(14)60844-8
  27. Murray CJL, 2014, BMC MED, V12, DOI 10.1186/1741-7015-12-5
  28. Murray CJL, 2012, LANCET, V380, P2063, DOI 10.1016/S0140-6736(12)61899-6
  29. Naghavi M, 2017, LANCET, V390, P1151, DOI 10.1016/S0140-6736(17)32152-9
  30. Naghavi M, 2015, LANCET, V385, P117, DOI 10.1016/S0140-6736(14)61682-2
  31. O'Donnell MR, 2016, INT J TUBERC LUNG D, V20, P430, DOI 10.5588/ijtld.15.0360
  32. Obermeyer Z, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001721
  33. Oliwa JN, 2015, LANCET RESP MED, V3, P235, DOI 10.1016/S2213-2600(15)00028-4
  34. Ortblad KF, 2013, AIDS, V27, P2003, DOI 10.1097/QAD.0b013e328362ba67
  35. Pamra SP, 1973, IND J TUBERC, V20, P57
  36. Piraino F, 2017, DIAGNOSTIC DEVICES M
  37. Qin ZZ, 2015, EUR RESPIR J, V45, P549, DOI 10.1183/09031936.00147714
  38. Samuels JP, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-23344-z
  39. Sekar R, 2012, J MED MICROBIOL DIAG, V1, pe103
  40. Shah N. S., 2007, Morbidity and Mortality Weekly Report, V56, P250
  41. Tiemersma EW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017601
  42. Vos T, 2016, LANCET, V388, P1545, DOI 10.1016/S0140-6736(16)31678-6
  43. Vos T, 2017, LANCET, V390, P1211, DOI 10.1016/S0140-6736(17)32154-2
  44. Wang HD, 2017, LANCET, V390, P1084, DOI 10.1016/S0140-6736(17)31833-0
  45. Wang HD, 2016, LANCET, V388, P1459, DOI 10.1016/S0140-6736(16)31012-1
  46. WHO, TUB TB DAT PROV COUN
  47. WHO, 2011, AUT REAL TIM NUCL AC
  48. World Health Organization, 2017, GLOB TUB REP 2017