Methylome profiling of healthy and central precocious puberty girls

Carregando...
Imagem de Miniatura
Citações na Scopus
35
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
MASCHIETTO, Mariana
AYLWIN, Carlos Francisco
PALHARES, Heloisa M. C.
RESENDE, Elisabete A. M. R. de
BORGES, Maria de Fatima
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
CLINICAL EPIGENETICS, v.10, article ID 146, 18p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundRecent studies demonstrated that changes in DNA methylation (DNAm) and inactivation of two imprinted genes (MKRN3 and DLK1) alter the onset of female puberty. We aimed to investigate the association of DNAm profiling with the timing of human puberty analyzing the genome-wide DNAm patterns of peripheral blood leukocytes from ten female patients with central precocious puberty (CPP) and 33 healthy girls (15 pre- and 18 post-pubertal). For this purpose, we performed comparisons between the groups: pre- versus post-pubertal, CPP versus pre-pubertal, and CPP versus post-pubertal.ResultsAnalyzing the methylome changes associated with normal puberty, we identified 120 differentially methylated regions (DMRs) when comparing pre- and post-pubertal healthy girls. Most of these DMRs were hypermethylated in the pubertal group (99%) and located on the X chromosome (74%). Only one genomic region, containing the promoter of ZFP57, was hypomethylated in the pubertal group. ZFP57 is a transcriptional repressor required for both methylation and imprinting of multiple genomic loci. ZFP57 expression in the hypothalamus of female rhesus monkeys increased during peripubertal development, suggesting enhanced repression of downstream ZFP57 target genes. Fourteen other zinc finger (ZNF) genes were related to the hypermethylated DMRs at normal puberty. Analyzing the methylome changes associated with CPP, we demonstrated that the patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Forty-eight ZNF genes were identified as having hypermethylated CpG sites in CPP.ConclusionMethylome profiling of girls at normal and precocious puberty revealed a widespread pattern of DNA hypermethylation, indicating that the pubertal process in humans is associated with specific changes in epigenetically driven regulatory control. Moreover, changes in methylation of several ZNF genes appear to be a distinct epigenetic modification underlying the initiation of human puberty.
Palavras-chave
Human puberty, Central precocious puberty, DNA methylation, Epigenetics, Genomic imprinting, Zinc finger genes
Referências
  1. Abreu AP, 2015, J MOL ENDOCRINOL, V54, pR131, DOI 10.1530/JME-14-0315
  2. Abreu AP, 2013, NEW ENGL J MED, V368, P2467, DOI 10.1056/NEJMoa1302160
  3. Almstrup K, 2016, SCI REP-UK, V6, DOI 10.1038/srep28657
  4. Assenov Y, 2014, NAT METHODS, V11, P1138, DOI [10.1038/NMETH.3115, 10.1038/nmeth.3115]
  5. Azzi S, 2011, HUM MUTAT, V32, P249, DOI 10.1002/humu.21403
  6. Berdasco M, 2013, HUM GENET, V132, P359, DOI 10.1007/s00439-013-1271-x
  7. Brito VN, 1999, J CLIN ENDOCR METAB, V84, P3539, DOI 10.1210/jc.84.10.3539
  8. Brito VN, 2004, J CLIN ENDOCR METAB, V89, P4338, DOI 10.1210/jc.2003-031537
  9. Chen S, 2017, GENET EPIGENETICS, V9, DOI 10.1177/1179237X17721540
  10. Dauber A, 2017, J CLIN ENDOCR METAB, V102, P1557, DOI 10.1210/jc.2016-3677
  11. de Vries L, 2004, J CLIN ENDOCR METAB, V89, P1794, DOI 10.1210/jc.2003-030361
  12. Deaton AM, 2011, GENE DEV, V25, P1010, DOI 10.1101/gad.2037511
  13. Eggermann T, 2015, CLIN EPIGENETICS, V7, DOI 10.1186/s13148-015-0143-8
  14. Felsenfeld G, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a018200
  15. FISCHBEIN S, 1977, ANN HUM BIOL, V4, P417, DOI 10.1080/03014467700002401
  16. Geoffron S, 2018, J CLIN ENDOCR METAB, V103, P2436, DOI 10.1210/jc.2017-02152
  17. Giorda R, 2009, AM J HUM GENET, V85, P394, DOI 10.1016/j.ajhg.2009.08.001
  18. Grosso S, 2000, ENDOCR PATHOL, V11, P69, DOI 10.1385/EP:11:1:69
  19. Heger S, 2007, J CLIN INVEST, V117, P2145, DOI 10.1172/JC131752
  20. Hou P, 2011, ENDOCR-RELAT CANCER, V18, P687, DOI 10.1530/ERC-11-0212
  21. Houseman EA, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-86
  22. Jones PA, 2012, NAT REV GENET, V13, P484, DOI 10.1038/nrg3230
  23. Kanherkar Riya R, 2014, Front Cell Dev Biol, V2, P49, DOI 10.3389/fcell.2014.00049
  24. Kurian Joseph R, 2013, Front Endocrinol (Lausanne), V4, P61, DOI 10.3389/fendo.2013.00061
  25. Latronico AC, 2016, LANCET DIABETES ENDO, V4, P265, DOI 10.1016/S2213-8587(15)00380-0
  26. Leka-Emiri S, 2017, J ENDOCRINOL INVEST, V40, P789, DOI 10.1007/s40618-017-0627-9
  27. Li XJ, 2008, DEV CELL, V15, P547, DOI 10.1016/j.devcel.2008.08.014
  28. Ligtenberg MJL, 2009, NAT GENET, V41, P112, DOI 10.1038/ng.283
  29. Lomniczi A, 2016, ENDOCR DEV, V29, P1, DOI 10.1159/000438840
  30. Lomniczi A, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10195
  31. Lomniczi A, 2013, NAT NEUROSCI, V16, P281, DOI 10.1038/nn.3319
  32. Lupo A, 2013, CURR GENOMICS, V14, P268, DOI 10.2174/13892029113149990002
  33. Macedo DB, 2014, ARQ BRAS ENDOCRINOL, V58, P108, DOI 10.1590/0004-2730000002931
  34. Macedo DB, 2014, NEUROENDOCRINOLOGY, V100, P1, DOI 10.1159/000366282
  35. Mackay DJG, 2008, NAT GENET, V40, P949, DOI 10.1038/ng.187
  36. Maksimovic J, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-6-r44
  37. Mangs AH, 2007, CURR GENOMICS, V8, P129, DOI 10.2174/138920207780368141
  38. Mayer C, 2010, P NATL ACAD SCI USA, V107, P22693, DOI 10.1073/pnas.1012406108
  39. Navaratnam DS, 2000, J NEUROCHEM, V74, P2146, DOI 10.1046/j.1471-4159.2000.0742146.x
  40. Ojeda SR, 2014, NAT REV ENDOCRINOL, V10, P67, DOI 10.1038/nrendo.2013.233
  41. Palmert MR, 2003, MOL GENET METAB, V80, P1, DOI 10.1016/S1096-7192(03)00107-0
  42. Palmert MR, 2001, J CLIN ENDOCR METAB, V86, P2364, DOI 10.1210/jc.86.6.2364
  43. Perrier AL, 2000, J BIOL CHEM, V275, P34260, DOI 10.1074/jbc.M004289200
  44. Perry JRB, 2014, NATURE, V514, P92, DOI 10.1038/nature13545
  45. Perry JRB, 2009, NAT GENET, V41, P648, DOI 10.1038/ng.386
  46. Peters TJ, 2015, EPIGENET CHROMATIN, V8, DOI 10.1186/1756-8935-8-6
  47. Pink RC, 2011, RNA, V17, P792, DOI 10.1261/rna.2658311
  48. Richards EJ, 2006, NAT REV GENET, V7, P395, DOI 10.1038/nrg1834
  49. Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  50. Rzeczkowska PA, 2014, NEUROENDOCRINOLOGY, V99, P139, DOI 10.1159/000362559
  51. Simon D, 2016, EUR J ENDOCRINOL, V174, P1, DOI 10.1530/EJE-15-0488
  52. Skordis N, 2017, HORM-INT J ENDOCRINO, V16, P209
  53. Smallwood SA, 2012, TRENDS GENET, V28, P33, DOI 10.1016/j.tig.2011.09.004
  54. Smith ZD, 2013, NAT REV GENET, V14, P204, DOI 10.1038/nrg3354
  55. Spatz A, 2004, NAT REV CANCER, V4, P617, DOI 10.1038/nrc1413
  56. Strogantsev R, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0672-7
  57. Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  58. Thompson EE, 2018, CLIN EPIGENETICS, V10, DOI 10.1186/s13148-018-0491-2
  59. Triche TJ, 2013, NUCLEIC ACIDS RES, V41, DOI 10.1093/nar/gkt090
  60. Tukiainen T, 2017, NATURE, V550, P244, DOI 10.1038/nature24265
  61. WATANABE G, 1989, ENDOCRINOLOGY, V125, P92, DOI 10.1210/endo-125-1-92
  62. Zhang B, 2005, NUCLEIC ACIDS RES, V33, pW741, DOI 10.1093/nar/gki475
  63. Zhang YC, 2013, MOL BIOL EVOL, V30, P2588, DOI 10.1093/molbev/mst148