Monocytes from male patients with ankylosing spondylitis display decreased osteoclastogenesis and decreased RANKL/OPG ratio

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2018
Editora
SPRINGER LONDON LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
OSTEOPOROSIS INTERNATIONAL, v.29, n.11, p.2565-2573, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
aSummaryThe present study investigates the osteoclastogenic capacity of peripheral blood mononuclear cells (PBMCs) in male patients with ankylosing spondylitis (AS). We demonstrated that monocytes from these patients display a lower capacity to generate osteoclasts compared to cells from healthy controls, and osteoclastogenesis was negatively correlated with disease duration.IntroductionAnkylosing spondylitis (AS) is a disease characterized by new bone growth that leads to syndesmophyte formation but AS patients frequently present with low bone mineral density/fractures. Osteoclastogenesis in AS patients is poorly studied and controversial. The aim of this study is to determine if the osteoclastogenic capacity of PBMCs is different in AS patients compared to controls and the relationship between osteoclastogenesis and clinical/laboratory parameters.MethodsPBMCs from 85 male AS patients and 59 controls were tested for CD16+ cells and induced to differentiate into osteoclasts over 3weeks in vitro. Serum levels of RANKL, osteoprotegerin (OPG), C-terminal telopeptide of type I collagen (CTX), and amino-terminal pro-peptide of type I collagen (P1NP) were also evaluated.ResultsPBMCs from AS patients had fewer CD16+ cells and produced fewer osteoclasts compared to controls. Apoptosis occurred less frequently in osteoclasts obtained from AS patients than in osteoclasts from the controls. A lower RANKL/OPG and CTX/P1NP were observed in AS patients compared to controls. AS patients taking NSAIDs presented no difference regarding the number of OCs produced and the percentage of CD16+ cells compared to controls. However, patients taking TNF inhibitors (TNFi) presented lower OC numbers than controls. A negative correlation was demonstrated between the number of osteoclasts generated from PBMCs of AS patients and disease duration.ConclusionMonocytes from male AS patients display a lower capacity to generate osteoclasts in vitro compared to cells from controls. Osteoclastogenesis was negatively correlated with disease duration. This finding supports the idea that osteoclasts play a role in the physiopathology of bone disease in AS patients.
Palavras-chave
Ankylosing spondylitis, Apoptosis, CTX, Osteoclastogenesis, Osteoprotegerin, P1NP, RANKL
Referências
  1. Appel H, 2006, ARTHRITIS RHEUM-US, V54, P1805, DOI 10.1002/art.21907
  2. Briot K, 2015, RMD OPEN, V1, DOI 10.1136/rmdopen-2014-000014
  3. Carter Shea, 2011, Curr Osteoporos Rep, V9, P112, DOI 10.1007/s11914-011-0058-z
  4. Chen CH, 2010, CLIN RHEUMATOL, V29, P1155, DOI 10.1007/s10067-010-1543-y
  5. Colina M, 2013, BIOMED PREVENT NUTR, V3, P253, DOI 10.1016/j.bionut.2012.10.013
  6. Creemers MCW, 2005, ANN RHEUM DIS, V64, P127, DOI 10.1136/ard.2004.020503
  7. Dougados M, 2011, LANCET, V377, P2127, DOI 10.1016/S0140-6736(11)60071-8
  8. DUBOST JJ, 1989, J RHEUMATOL, V16, P1214
  9. Durand M, 2011, BONE, V48, P588, DOI 10.1016/j.bone.2010.10.167
  10. Durand M, 2013, ARTHRITIS RHEUM-US, V65, P148, DOI 10.1002/art.37722
  11. Durnez A, 2013, J RHEUMATOL, V40, P1712, DOI 10.3899/jrheum.121417
  12. Franck H, 2004, J RHEUMATOL, V31, P2236
  13. Francois RJ, 2006, ANN RHEUM DIS, V65, P713, DOI 10.1136/ard.2005.037465
  14. Goh L, 2008, CLIN RHEUMATOL, V27, P449, DOI 10.1007/s10067-007-0726-7
  15. Grazio S, 2012, RHEUMATOL INT, V32, P2801, DOI 10.1007/s00296-011-2066-9
  16. Im CH, 2009, CLIN EXP RHEUMATOL, V27, P620
  17. Karakawa A, 2009, J DENT RES, V88, P1042, DOI 10.1177/0022034509346147
  18. Karsdal MA, 2007, J BONE MINER RES, V22, P487, DOI 10.1359/JBMR.070109
  19. Kawashima M, 2009, MOD RHEUMATOL, V19, P192, DOI 10.1007/s10165-008-0149-6
  20. Klingberg E, 2014, J RHEUMATOL, V41, P1349, DOI 10.3899/jrheum.131199
  21. Kotake S, 2010, PHARMACEUTICALS, V3, P1394, DOI 10.3390/ph3051394
  22. Lories RJU, 2012, RHEUM DIS CLIN N AM, V38, P555, DOI 10.1016/j.rdc.2012.08.003
  23. Lories RJU, 2009, ARTHRITIS RES THER, V11, DOI 10.1186/ar2642
  24. Machado P, 2011, ANN RHEUM DIS, V70, P47, DOI 10.1136/ard.2010.138594
  25. Magrey MN, 2016, SEMIN ARTHRITIS RHEU, V46, P88, DOI 10.1016/j.semarthrit.2016.03.003
  26. Manolson MF, 2003, J BIOL CHEM, V278, P49271, DOI 10.1074/jbc.M309914200
  27. Marzo-Ortega H, 2007, RHEUMATOLOGY, V46, P1210, DOI 10.1093/rheumatology/kem098
  28. MCculluch CE, 2001, GEN LINEAR MIXED MOD
  29. Nakao A, 2007, BIOCHEM BIOPH RES CO, V357, P945, DOI 10.1016/j.bbrc.2007.04.058
  30. Perpetuo IP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0144655
  31. Poddubnyy D, 2012, ANN RHEUM DIS, V71, P1616, DOI 10.1136/annrheumdis-2011-201252
  32. Runolfsdottir HL, 2015, ARCH OSTEOPOROS, V10, DOI 10.1007/s11657-015-0214-7
  33. Salari Pooneh, 2009, Inflammation & Allergy Drug Targets, V8, P169
  34. Sarikaya S, 2007, JCR-J CLIN RHEUMATOL, V13, P20, DOI 10.1097/01.rhu.0000255688.83037.42
  35. Seguro LPC, 2015, OSTEOPOROSIS INT, V26, P459, DOI 10.1007/s00198-014-2860-9
  36. Sieper J, 2009, ANN RHEUM DIS, V68, P1, DOI 10.1136/ard.2008.104018
  37. Singh HJ, 2013, J CLIN DIAGN RES, V7, P2832, DOI 10.7860/JCDR/2013/6779.3770
  38. Spelling P, 2008, SCAND J RHEUMATOL, V37, P439, DOI 10.1080/03009740802116224
  39. Sprangers S, 2016, J IMMUNOL RES, DOI 10.1155/2016/1475435
  40. Sprangers S, 2016, J CELL PHYSIOL, V231, P1249, DOI 10.1002/jcp.25220
  41. Surdacki A, 2014, J RHEUMATOL, V41, P481, DOI 10.3899/jrheum.130803
  42. Toussirot E, 2007, CURR OPIN RHEUMATOL, V19, P340
  43. van der Weijden MAC, 2012, CLIN RHEUMATOL, V31, P1529, DOI 10.1007/s10067-012-2018-0
  44. VANDERLINDEN S, 1984, ARTHRITIS RHEUM, V27, P361
  45. Wanders A, 2005, ARTHRITIS RHEUM-US, V52, P1756, DOI 10.1002/art.21054
  46. Webers C, 2016, RHEUMATOLOGY, V55, P419, DOI 10.1093/rheumatology/kev340
  47. Wong KL, 2012, IMMUNOL RES, V53, P41, DOI 10.1007/s12026-012-8297-3
  48. Xiong HZ, 2015, IMMUNOBIOLOGY, V220, P210, DOI 10.1016/j.imbio.2014.08.007