MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPANDIDOS PUBL LTD
Autores
MUNDIM, Fiorita Gonzales Lopes
SOARES, Fernando Augusto
NONOGAKI, Suely
WAITZBERG, Angela Flayia Logullo
Citação
MOLECULAR AND CLINICAL ONCOLOGY, v.3, n.3, p.506-514, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The MYC oncogene is directly involved in the proliferation, metabolism, progression and distant metastasis of breast cancer. Since metastatic spread to the lymph nodes is often the first indication of propensity for metastatic dissemination, the MYC status in nodal disease may represent a decision-making variable. However, the analysis of MYC expression in stromal cells, namely cancer-associated fibroblasts (CAFs), which are known to play a critical role in cancer progression, remains poorly reported. The aim of this study was to determine the expression of MYC and other markers, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), p53, Ki67, epidermal growth factor receptor (EGFR), phosphorylated AKT (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) by immunohistochemistry in representative samples from 80 patients with ductal infiltrative breast cancer and 43 paired compromised axillary lymph nodes allocated in tissue microarrays (TMAs). The epithelial and stromal components of primary tumors and respective lymph node metastases were separately analyzed. MYC expression (cytoplasmic and nuclear) was a frequent event in the epithelial and stromal components of the primary tumors. The epithelial cells in the nodal metastases exhibited a trend for decreased MYC expression compared to that in the primary tumors (P=0.08) but retained the original status of the primary tumors for all other markers. The stromal cells were uniformly negative for ER, PR, HER2, p53, Ki67 and EGFR. Comparison of the stromas of primary tumors and respective lymph node metastases revealed a reduced frequency of nuclear MYC in 15% of the cases (P=0.003), whereas p-mTOR followed a similar trend (P=0.09). Analyses of the possible correlations among markers revealed that epithelial nuclear MYC was associated with p53 (P=0.048). This is an original study demonstrating a significant proportion of MYC expression (nuclear or cytoplasmic), as well p-mTOR and p-AKT expression, in the epithelial and stromal components of either the primary tumor or the nodal metastases. CAFs expressing MYC may establish an angiogenic microenvironment supporting cancer survival and facilitating colonization at the nodal metastatic site.
Palavras-chave
MYC, breast carcinoma, cancer-associated fibroblasts, nodal metastasis, proliferation markers
Referências
  1. Aitken SJ, 2010, ANN ONCOL, V21, P1254, DOI 10.1093/annonc/mdp427
  2. Albihn A, 2010, ADV CANCER RES, V107, P163, DOI 10.1016/S0065-230X(10)07006-5
  3. Alles MC, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004710
  4. Allred DC, 1999, CANCER, V86, P905, DOI 10.1002/(SICI)1097-0142(19990915)86:6<905::AID-CNCR1>3.3.CO;2-B
  5. Baudino TA, 2002, GENE DEV, V16, P2530, DOI 10.1101/gad.1024602
  6. Blancato J, 2004, BRIT J CANCER, V90, P1612, DOI 10.1038/sj.bjc.6601703
  7. Cao YH, 2005, NAT REV CANCER, V5, P735, DOI 10.1038/nrc1693
  8. Carey LA, 2006, JAMA-J AM MED ASSOC, V295, P2492, DOI 10.1001/jama.295.21.2492
  9. Chambers AF, 2002, NAT REV CANCER, V2, P563, DOI 10.1038/nrc865
  10. Chandriani S, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006693
  11. Chen YH, 2008, EXPERT REV ANTICANC, V8, P1689, DOI 10.1586/14737140.8.10.1689
  12. Chrzan P, 2001, CLIN BIOCHEM, V34, P557, DOI 10.1016/S0009-9120(01)00260-0
  13. Dang CV, 2009, CLIN CANCER RES, V15, P6479, DOI 10.1158/1078-0432.CCR-09-0889
  14. Doe MR, 2012, CANCER RES, V72, P949, DOI 10.1158/0008-5472.CAN-11-2371
  15. Ellsworth RE, 2008, ANN SURG ONCOL, V15, P1989, DOI 10.1245/s10434-008-9902-5
  16. Falck AK, 2010, WORLD J SURG, V34, P1434, DOI 10.1007/s00268-010-0499-z
  17. Gouvea AP, 2006, APPL IMMUNOHISTO M M, V14, P103, DOI 10.1097/01.pai.0000155794.64525.11
  18. Hasebe T, 2000, AM J PATHOL, V156, P1701, DOI 10.1016/S0002-9440(10)65041-9
  19. Joensuu K, 2011, VIRCHOWS ARCH, V459, P31, DOI 10.1007/s00428-011-1096-8
  20. Kalluri R, 2006, NAT REV CANCER, V6, P392, DOI 10.1038/nrc1877
  21. Miller TW, 2011, CLIN CANCER RES, V17, P2024, DOI 10.1158/1078-0432.CCR-10-2567
  22. Musgrove EA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002987
  23. Naidu R, 2002, INT J MOL MED, V9, P189
  24. Nielsen TO, 2004, CLIN CANCER RES, V10, P5367, DOI 10.1158/1078-0432.CCR-04-0220
  25. O'Connell JT, 2011, P NATL ACAD SCI USA, V108, P16002, DOI 10.1073/pnas.1109493108
  26. Ostano P, 2012, OMICS, V16, P24, DOI 10.1089/omi.2011.0049
  27. Pavlides S, 2009, CELL CYCLE, V8, P3984, DOI 10.4161/cc.8.23.10238
  28. Planas-Silva MD, 2007, EXP MOL PATHOL, V82, P85, DOI 10.1016/j.yexmp.2006.09.001
  29. Rodriguez-Pinilla SM, 2007, J CLIN PATHOL, V60, P1017, DOI 10.1136/jcp.2006.043869
  30. Singhi AD, 2012, MODERN PATHOL, V25, P378, DOI 10.1038/modpathol.2011.171
  31. SPANDIDOS DA, 1989, ANTICANCER RES, V9, P1385
  32. Tobler NE, 2006, J LEUKOCYTE BIOL, V80, P691, DOI 10.1189/jlb.1105653
  33. Todorovic-Rakovic N, 2012, CLIN EXP MED, V12, P217, DOI 10.1007/s10238-011-0169-y
  34. Wolfer A, 2011, CANCER RES, V71, P2034, DOI 10.1158/0008-5472.CAN-10-3776
  35. Wolfer A, 2010, P NATL ACAD SCI USA, V107, P3698, DOI 10.1073/pnas.0914203107
  36. Yasojima H, 2011, EUR J CANCER, V47, P1779, DOI 10.1016/j.ejca.2011.06.017
  37. Zongaro S, 2005, CANCER RES, V65, P11411, DOI 10.1158/0008-5472.CAN-05-1140