Accessing the Anterior Mesencephalic Zone: Orbitozygomatic Versus Subtemporal Approach

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
WORLD NEUROSURGERY, v.119, p.E818-E824, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND: Despite the latest developments in microsurgery, electrophysiological monitoring, and neuroimaging, the surgical management of intrinsic brainstem lesions remains challenging. Several safe entry points have been described to access the different surfaces of the brainstem. Knowledge of this entry zone anatomy is critical to performing a safe and less morbid approach. To access the anterior midbrain surface, a well-known entry point is the anterior mesencephalic (AM) zone. Our aim was to quantify surgical AM zone exposure through the orbitozygomatic (OZ) and subtemporal (ST) approaches. We also analyzed the angular exposure along the horizontal and vertical axis angles for the AM zone. METHODS: Ten cadaveric heads were dissected using the OZ and ST approaches for anterior midbrain surface exposure. A neuronavigation system was used to determine the 3-dimensional coordinates. The area of surgical exposure, angular exposure, and anatomical limits of each craniotomy were evaluated and determined using software analysis and compared for intersection areas and AM safe zone exposure. RESULTS: The median surgical exposure was 164.7 +/- 43.6 mm(2) for OZ and 369.8 1 70.1 mm(2) for ST (P = 0.001). The vertical angular exposure was 37.7 degrees +/- 9.92 degrees for the OZ and 18.4 degrees +/- 2.8 degrees for the ST opening (P < 0.001). The horizontal angular exposure to the AM zone was 37.9 degrees +/- 7.3 degrees for the OZ and 47.0 degrees +/- 3.2 degrees for the ST opening (P = 0.002). CONCLUSIONS: Although the OZ craniotomy offers reduced surgical exposure, it provides a better trajectory to the AM zone compared with the ST approach.
Palavras-chave
Anterior mesencephalic zone, Brainstem surgery, Orbitozygomatic craniotomy, Safe entry zones, Subtemporal craniotomy, Surgical approaches
Referências
  1. Abla AA, 2011, NEUROSURGERY, V68, P403, DOI 10.1227/NEU.0b013e3181ff9cde
  2. BAGHAI P, 1982, NEUROSURGERY, V10, P574, DOI 10.1227/00006123-198205000-00005
  3. Bailey P, 1939, INTRACRANIAL TUMORS
  4. Bricolo A, 1991, Acta Neurochir Suppl (Wien), V53, P148
  5. Bricolo A, 1995, Adv Tech Stand Neurosurg, V22, P261
  6. Bricolo A, 2009, PRACTICAL HDB NEUROS, P349
  7. Brown AP, 1996, BNI Q, V12, P20
  8. Cavalcanti DD, 2016, J NEUROSURG, V124, P1359, DOI 10.3171/2015.4.JNS141945
  9. Cavalcanti DD, 2010, NEUROSURGERY, V66, pONS205, DOI 10.1227/01.NEU.0000369948.37233.70
  10. Deshmukh VR, 2006, NEUROSURGERY, V58, P202, DOI 10.1227/01.NEU.0000207373.26614.BF
  11. EPSTEIN F, 1986, J NEUROSURG, V64, P11, DOI 10.3171/jns.1986.64.1.0011
  12. Ferroli P, 2005, NEUROSURGERY, V56, P1203, DOI 10.1227/01.NEU.0000159644.04757.45
  13. Figueiredo EG, 2007, NEUROSURGERY, V61, P256, DOI [10.1227/01.neu.0000303978.11752.45, 10.1227/01.NIEU.0000280126.60926.B7]
  14. Figueiredo EG, 2006, NEUROSURGERY, V59, P212, DOI 10.1227/01.NEU.0000223365.55701.F2
  15. Figueiredo EG, 2012, J CLIN NEUROSCI, V19, P1545, DOI 10.1016/j.jocn.2012.01.032
  16. Figueiredo EG, 2008, NEUROSURGERY, V62, P1361, DOI [10.1227/01.neu.0000333801.51962.2f, 10.1227/01.NEU.0000233691.23208.9C]
  17. Figueiredo Eberval Gadelha, 2005, Neurosurgery, V56, P397, DOI 10.1227/01.NEU.0000156549.96185.6D
  18. Figueiredo EG, 2016, WORLD NEUROSURG, V87, P584, DOI 10.1016/j.wneu.2015.10.063
  19. Figueiredo EG, 2015, WORLD NEUROSURG, V84, P1907, DOI 10.1016/j.wneu.2015.08.031
  20. Figueiredo EG, 2006, J NEUROSURG, V104, P957, DOI 10.3171/jns.2006.104.6.957
  21. Figueiredo EG, 2006, NEUROSURGERY, V58, P13, DOI 10.1227/01.NEU.0000193921.17628.6F
  22. Gonzalez LF, 2002, NEUROSURGERY, V50, P550, DOI 10.1097/00006123-200203000-00023
  23. Hebb MO, 2010, NEUROSURGERY, V66, P26, DOI 10.1227/01.NEU.0000350865.85697.18
  24. Honeybul S, 1996, ACTA NEUROCHIR, V138, P255, DOI 10.1007/BF01411735
  25. Januszewski J, 2016, WORLD NEUROSURG, V93, P377, DOI 10.1016/j.wneu.2016.06.019
  26. Kalani MYS, 2016, J NEUROSURG, V125, P1596, DOI 10.3171/2016.6.JNS161043
  27. KONOVALOV AN, 1990, J NEUROSURG, V73, P181, DOI 10.3171/jns.1990.73.2.0181
  28. KYOSHIMA K, 1993, J NEUROSURG, V78, P987, DOI 10.3171/jns.1993.78.6.0987
  29. LASSITER KR, 1971, J NEUROSURG, V34, P719, DOI 10.3171/jns.1971.34.6.0719
  30. Meola A, 2016, NEUROSURGERY, V79, P437, DOI 10.1227/NEU.0000000000001224
  31. Porter RW, 1999, J NEUROSURG, V90, P50, DOI 10.3171/jns.1999.90.1.0050
  32. Recalde RJ, 2008, NEUROSURGERY, V63, P9, DOI [10.1227/01.NEU.0000297062.52433.3F, 10.1227/01.neu.0000317368.69523.40]
  33. Safavi-Abbasi S, 2010, NEUROSURGERY, V66, P54, DOI 10.1227/01.NEU.0000354366.48105.FE
  34. Schwartz MS, 1999, J NEUROSURG, V91, P1020, DOI 10.3171/jns.1999.91.6.1020
  35. Sekhar LN, 2014, WORLD NEUROSURG, V82, DOI 10.1016/j.wneu.2013.07.104
  36. Siwanuwatn R, 2006, J NEUROSURG, V104, P137, DOI 10.3171/jns.2006.104.1.137
  37. Strauss C, 1997, J NEUROSURG, V87, P893, DOI 10.3171/jns.1997.87.6.0893
  38. Araujo JLV, 2017, J NEUROSURG, V127, P209, DOI 10.3171/2016.8.JNS16403
  39. Wen D Y, 1993, Neurosurg Clin N Am, V4, P457
  40. Yasargil MG, 1984, MICROSURGICAL ANATOM
  41. Zabramski JM, 1998, J NEUROSURG, V89, P336, DOI 10.3171/jns.1998.89.2.0336