Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold

Show simple item record

dc.contributor Sistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.author CHEROBIN, Giancarlo B. FMUSP-HC
VOEGELS, Richard L. FMUSP-HC
GEBRIM, Eloise M. M. S.
GARCIA, Guilherme J. M.
dc.date.issued 2018
dc.identifier.citation PLOS ONE, v.13, n.11, article ID e0207178, 16p, 2018
dc.identifier.issn 1932-6203
dc.identifier.uri http://observatorio.fm.usp.br/handle/OPI/29976
dc.description.abstract Computational fluid dynamics (CFD) allows quantitative assessment of transport phenomena in the human nasal cavity, including heat exchange, moisture transport, odorant uptake in the olfactory cleft, and regional delivery of pharmaceutical aerosols. The first step when applying CFD to investigate nasal airflow is to create a 3-dimensional reconstruction of the nasal anatomy from computed tomography (CT) scans or magnetic resonance images (MRI). However, a method to identify the exact location of the air-tissue boundary from CT scans or MRI is currently lacking. This introduces some uncertainty in the nasal cavity geometry. The radiodensity threshold for segmentation of the nasal airways has received little attention in the CFD literature. The goal of this study is to quantify how uncertainty in the segmentation threshold impacts CFD simulations of transport phenomena in the human nasal cavity. Three patients with nasal airway obstruction were included in the analysis. Pre-surgery CT scans were obtained after mucosal decongestion with oxymetazoline. For each patient, the nasal anatomy was reconstructed using three different thresholds in Hounsfield units (-800HU, -550HU, and -300HU). Our results demonstrate that some CFD variables (pressure drop, flowrate, airflow resistance) and anatomic variables (airspace cross-sectional area and volume) are strongly dependent on the segmentation threshold, while other CFD variables (intranasal flow distribution, surface area) are less sensitive to the segmentation threshold. These findings suggest that identification of an optimal threshold for segmentation of the nasal airway from CT scans will be important for good agreement between in vivo measurements and patient-specific CFD simulations of transport phenomena in the nasal cavity, particularly for processes sensitive to the transnasal pressure drop. We recommend that future CFD studies should always report the segmentation threshold used to reconstruct the nasal anatomy.
dc.description.sponsorship · Fundacao de amparo a pesquisa do estado de Sao Paulo [2012/20823-9]
dc.language.iso eng
dc.publisher PUBLIC LIBRARY SCIENCE
dc.relation.ispartof Plos One
dc.rights openAccess
dc.subject.other cone-beam ct; paranasal sinuses; cavity; surgery; images; cfd; deposition; patency; model; cycle
dc.title Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold
dc.type article
dc.rights.holder Copyright PUBLIC LIBRARY SCIENCE
dc.description.group LIM/32
dc.identifier.doi 10.1371/journal.pone.0207178
dc.identifier.pmid 30444909
dc.type.category original article
dc.type.version publishedVersion
hcfmusp.author CHEROBIN, Giancarlo B.:FM:
hcfmusp.author VOEGELS, Richard L.:FM:MOF
hcfmusp.author.external · GEBRIM, Eloise M. M. S.:Univ Sao Paulo, Hosp Clin, Fac Med, Dept Radiol, Sao Paulo, Brazil
· GARCIA, Guilherme J. M.:Marquette Univ, Dept Biomed Engn, Milwaukee, WI 53233 USA; Med Coll Wisconsin, Milwaukee, WI 53226 USA; Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Milwaukee, WI 53226 USA
hcfmusp.origem.id WOS:000450420900020
hcfmusp.origem.id 2-s2.0-85056695624
hcfmusp.publisher.city SAN FRANCISCO
hcfmusp.publisher.country USA
hcfmusp.relation.reference · Alsufyani NA, 2012, DENTOMAXILLOFAC RAD, V41, P276, DOI 10.1259/dmfr/79433138
· Bahmanzadeh H, 2016, J AEROSOL SCI, V101, P86, DOI 10.1016/j.jaerosci.2016.07.010
· Borojeni AA, 2017, INT J NUMER METH BIO, V33, DOI 10.1002/cnm.2825
· Bui NL, 2015, INT J COMPUT ASS RAD, V10, P1269, DOI 10.1007/s11548-014-1134-5
· Carroll JRD, 2006, EUR RESPIR J, V28, P712, DOI 10.1183/09031936.06.00012405
· Casey KP, 2017, OTOLARYNG HEAD NECK, V156, P741, DOI 10.1177/0194599816687751
· Cercos-Pita JL, 2018, COMPUT PHYS COMMUN, V223, P55, DOI 10.1016/j.cpc.2017.10.008
· Chung SK, 2006, AM J RHINOL, V20, P379, DOI 10.2500/ajr.2006.20.2890
· Clement PAR, 2005, RHINOLOGY, V43, P169
· Elad D, 2006, J APPL PHYSIOL, V100, P1003, DOI 10.1152/japplphysiol.01049.2005
· Elad D, 2008, RESP PHYSIOL NEUROBI, V163, P121, DOI 10.1016/j.resp.2008.05.002
· Gaberino C, 2017, RESP PHYSIOL NEUROBI, V238, P23, DOI 10.1016/j.resp.2017.01.004
· Garcia GJM, 2007, J APPL PHYSIOL, V103, P1082, DOI 10.1152/japplphysiol.01118.2006
· Garcia GJM, 2015, INHAL TOXICOL, V27, P394, DOI 10.3109/08958378.2015.1066904
· Garcia GJM, 2010, AM J RHINOL ALLERGY, V24, pE46, DOI 10.2500/ajra.2010.24.3428
· Garcia GJM, 2009, INHAL TOXICOL, V21, P607, DOI 10.1080/08958370802320186
· Goldman LW, 2007, J NUCL MED TECHNOL, V35, DOI 10.2967/jnmt.106.037846
· Hariri BM, 2015, LARYNGOSCOPE, V125, P2635, DOI 10.1002/lary.25367
· Horschler I, 2006, INVESTIGATION IMPACT, P471
· Inthavong K, 2011, J AEROSOL SCI, V42, P100, DOI 10.1016/j.jaerosci.2010.11.008
· Kawarai Y, 1999, ACTA OTO-LARYNGOL, P45
· Kelly JT, 2000, J APPL PHYSIOL, V89, P323
· Kiaee M, 2018, INT J NUMER METH BIO, V34, DOI 10.1002/cnm.2968
· Kimbell JS, 2013, J BIOMECH, V46, P2634, DOI 10.1016/j.jbiomech.2013.08.007
· Kimbell JS, 2007, J AEROSOL MED, V20, P59, DOI 10.1089/jam.2006.0531
· Kimbell Julia S, 2018, Lasers Surg Med, DOI 10.1002/lsm.23005
· Kiraly AP, 2002, ACAD RADIOL, V9, P1153, DOI 10.1016/S1076-6332(03)80517-2
· Li CY, 2017, J BIOMECH, V64, P59, DOI 10.1016/j.jbiomech.2017.08.031
· Nakano H, 2013, DENTOMAXILLOFAC RAD, V42, DOI 10.1259/dmfr/26397438
· Nardelli P, 2015, BIOMED ENG ONLINE, V14, DOI 10.1186/s12938-015-0060-2
· Patel RG, 2015, OTOLARYNG HEAD NECK, V152, P353, DOI 10.1177/0194599814559385
· Quadrio M, 2016, MED BIOL ENG COMPUT, V54, P411, DOI 10.1007/s11517-015-1325-4
· Quammen CW, 2016, STUD HEALTH TECHNOL, V220, P295, DOI 10.3233/978-1-61499-625-5-295
· Rygg A, 2016, J AEROSOL MED PULM D, V29, P416, DOI 10.1089/jamp.2015.1252
· Sanmiguel-Rojas E, 2018, INT J NUMER METH BIO, V34, DOI 10.1002/cnm.2906
· Sanmiguel-Rojas E, 2018, INT J NUMER METH BIO, V34, DOI 10.1002/cnm.3126
· Schneider W, 2000, PHYS MED BIOL, V45, P459, DOI 10.1088/0031-9155/45/2/314
· Schroeter JD, 2011, J AEROSOL SCI, V42, P52, DOI 10.1016/j.jaerosci.2010.11.002
· Sullivan CD, 2014, OTOLARYNG HEAD NECK, V150, P139, DOI 10.1177/0194599813509776
· Taylor DJ, 2010, J R SOC INTERFACE, V7, P515, DOI 10.1098/rsif.2009.0306
· Tingelhoff K, 2007, P ANN INT IEEE EMBS, P5505, DOI 10.1109/IEMBS.2007.4353592
· Tingelhoff K, 2008, EUR ARCH OTO-RHINO-L, V265, P1061, DOI 10.1007/s00405-008-0594-z
· Vanhille DL, 2018, JAMA FACIAL PLAST SU, V20, P63, DOI 10.1001/jamafacial.2017.1554
· Weissheimer A, 2012, AM J ORTHOD DENTOFAC, V142, P801, DOI 10.1016/j.ajodo.2012.07.015
· Zeiberg AS, 1996, AM J ROENTGENOL, V166, P293, DOI 10.2214/ajr.166.2.8553933
· Zhao K, 2004, CHEM SENSES, V29, P365, DOI 10.1093/chemse/bjh033
dc.description.index MEDLINE
hcfmusp.citation.scopus 1
hcfmusp.citation.wos 0
hcfmusp.affiliation.country Brasil
hcfmusp.affiliation.country Estados Unidos


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace



Browse

My Account

Statistics