Human Synovial Mesenchymal Stem Cells Good Manufacturing Practices for Articular Cartilage Regeneration

Show simple item record

dc.contributor Sistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.author FERNANDES, Tiago Lazzaretti FMUSP-HC
KIMURA, Heitor Akio
PINHEIRO, Carla Cristina Gomes
SHIMOMURA, Kazunori
NAKAMURA, Norimasa
FERREIRA, Jose Ricardo
GOMOLL, Andreas H.
HERNANDEZ, Arnaldo Jose FMUSP-HC
BUENO, Daniela Franco
dc.date.issued 2018
dc.identifier.citation TISSUE ENGINEERING PART C-METHODS, v.24, n.12, p.709-716, 2018
dc.identifier.issn 1937-3384
dc.identifier.uri http://observatorio.fm.usp.br/handle/OPI/29996
dc.description.abstract Background: Cartilage restoration is a desperately needed bridge for patients with symptomatic cartilage lesions. Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. Despite autologous chondrocyte implantation versatility, it still fails to fully reproduce hyaline articular cartilage characteristics. Mesenchymal stem cells (MSCs) may be isolated from various known tissues, including discarded fragments at arthroscopy such as synovial membrane. Choice of harvesting site is motivated by MSCs' abilities to modulate immunologic and inflammatory response through paracrine communication. Synovial MSCs have a greater proliferation and strong chondrogenic potential than bone and adipose MSCs and a less hypertrophic differentiation than bone MSCs. Good manufacturing practice (GMP) laboratory techniques for human clinical trials are still novel. To our knowledge, there are only two clinical trials in humans published since today. Purpose: Therefore, this work aimed to isolate and characterize synovial MSCs and evaluated their differentiation properties according to GMP standards. Materials and Methods: One-gram tissue sample from three patients of synovia was harvested at the beginning of arthroscopy surgery. MSCs were isolated, expanded, and characterized by flow cytometry. Results: It was possible to isolate and expand MSCs cultures from synovia, characterize MSCs by flow cytometry using proper monoclonal antibodies, and differentiate MSCs by coloring technique after chondrogenic, adipogenic, and osteogenic differentiations. Cartilage treatment may benefit from these tissue engineering protocols since arthroscopic procedures are routinely performed for different purposes in a previous stage and a favorable chondronegic differentiation cell lineage may be collected and stored in a less invasive way. Conclusion: Laboratory protocols established according to presented GMP were able to isolate and characterize MSCs obtained from synovia.
dc.description.sponsorship · Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2017/05774-5]
· Co-ordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [88881.171651/2018-01]
· International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine
· Sirio-Libanes Hospital
· Orthopaedic Research and Education Foundation (ISAKOS Osteoarthritis)
dc.language.iso eng
dc.publisher MARY ANN LIEBERT, INC
dc.relation.ispartof Tissue Engineering Part C-Methods
dc.rights restrictedAccess
dc.subject synovia; tissue engineering; mesenchymal stem cells; hyaline articular cartilage; chondrogenic differentiation; immune modulation
dc.subject.other autologous chondrocyte implantation; osteogenic differentiation; fat pad; knee; repair; defects; therapy; hyaluronate; scaffold; markers
dc.title Human Synovial Mesenchymal Stem Cells Good Manufacturing Practices for Articular Cartilage Regeneration
dc.type article
dc.rights.holder Copyright MARY ANN LIEBERT, INC
dc.description.group LIM/41
dc.identifier.doi 10.1089/ten.tec.2018.0219
dc.identifier.pmid 30412046
dc.type.category original article
dc.type.version publishedVersion
hcfmusp.author FERNANDES, Tiago Lazzaretti:HC:IOT
hcfmusp.author HERNANDEZ, Arnaldo Jose:FM:MOT
hcfmusp.author.external · KIMURA, Heitor Akio:Hosp Sirio Libanes, Inst Ensino & Pesquisa, Sao Paulo, Brazil
· PINHEIRO, Carla Cristina Gomes:Hosp Sirio Libanes, Inst Ensino & Pesquisa, Sao Paulo, Brazil
· SHIMOMURA, Kazunori:Osaka Univ, Dept Orthopaed Surg, Grad Sch Med, Osaka, Japan
· NAKAMURA, Norimasa:Osaka Univ, Ctr Adv Med Engn & Informat, Osaka, Japan
· FERREIRA, Jose Ricardo:Mil Inst Engn IME, Dept Mat Sci, Post Grad Programme Mat Sci, Rio De Janeiro, Brazil
· GOMOLL, Andreas H.:Hosp Special Surg, Orthoped Surg & Sports Med, 535 E 70th St, New York, NY 10021 USA
· BUENO, Daniela Franco:Hosp Sirio Libanes, Inst Ensino & Pesquisa, Sao Paulo, Brazil
hcfmusp.origem.id WOS:000453296700004
hcfmusp.origem.id 2-s2.0-85058519947
hcfmusp.publisher.city NEW ROCHELLE
hcfmusp.publisher.country USA
hcfmusp.relation.reference · ARUFFO A, 1990, CELL, V61, P1303, DOI 10.1016/0092-8674(90)90694-A
· Baboolal TG, 2016, ANN RHEUM DIS, V75, P908, DOI 10.1136/annrheumdis-2014-206847
· Bueno DF, 2009, TISSUE ENG PT A, V15, P427, DOI 10.1089/ten.tea.2007.0417
· Codinach M, 2016, CYTOTHERAPY, V18, P1197, DOI 10.1016/j.jcyt.2016.05.012
· Dominici M, 2006, CYTOTHERAPY, V8, P315, DOI 10.1080/14653240600855905
· English A, 2007, RHEUMATOLOGY, V46, P1676, DOI 10.1093/rheumatology/kem217
· Farr Jack, 2016, J Clin Orthop Trauma, V7, P183, DOI 10.1016/j.jcot.2016.05.001
· Fernandes TL, 2018, STEM CELL REV REP, V14, P734, DOI 10.1007/s12015-018-9820-2
· Flanigan DC, 2010, MED SCI SPORT EXER, V42, P1795, DOI 10.1249/MSS.0b013e3181d9eea0
· Garcia J, 2016, SCI REP-UK, V6, DOI 10.1038/srep24295
· Halfon S, 2011, STEM CELLS DEV, V20, P53, DOI 10.1089/scd.2010.0040
· Hee CK, 2006, BIOMATERIALS, V27, P875, DOI 10.1016/j.biomaterials.2005.07.004
· Hickery MS, 2003, J BIOL CHEM, V278, P53063, DOI 10.1074/jbc.M209632200
· Hunziker EB, 2002, OSTEOARTHR CARTILAGE, V10, P432, DOI 10.1053/joca.2002.0801
· ISSCR, 2016, GUID STEM CELL RES D
· Jazedje T, 2009, J TRANSL MED, V7, DOI 10.1186/1479-5876-7-46
· Junker JPE, 2010, CELLS TISSUES ORGANS, V191, P105, DOI 10.1159/000232157
· Kikuchi T, 1996, OSTEOARTHR CARTILAGE, V4, P99, DOI 10.1016/S1063-4584(05)80319-X
· Koh YG, 2012, KNEE, V19, P902, DOI 10.1016/j.knee.2012.04.001
· Kubosch EJ, 2018, CURR STEM CELL RES T, V13, P174, DOI 10.2174/1574888X12666171002111026
· Lorenz K, 2008, EXP DERMATOL, V17, P925, DOI 10.1111/j.1600-0625.2008.00724.x
· Maxson S, 2012, STEM CELL TRANSL MED, V1, P142, DOI 10.5966/sctm.2011-0018
· Mochizuki T, 2006, ARTHRITIS RHEUM, V54, P843, DOI 10.1002/art.21651
· Niemeyer P, 2014, INT ORTHOP, V38, P2065, DOI 10.1007/s00264-014-2368-0
· Ochi M, 2004, ARTIF ORGANS, V28, P28, DOI 10.1111/j.1525-1594.2004.07317.x
· Park YB, 2017, STEM CELL TRANSL MED, V6, P613, DOI 10.5966/sctm.2016-0157
· Pei M, 2008, DIFFERENTIATION, V76, P1044, DOI 10.1111/j.1432-0436.2008.00299.x
· Perera JR, 2012, ANN ROY COLL SURG, V94, P381, DOI 10.1308/003588412X13171221592573
· Sakaguchi Y, 2005, ARTHRITIS RHEUM, V52, P2521, DOI 10.1002/art.21212
· Samuelson EM, 2012, AM J SPORT MED, V40, P1252, DOI 10.1177/0363546512441586
· Sekiya I, 2015, CLIN ORTHOP RELAT R, V473, P2316, DOI 10.1007/s11999-015-4324-8
· Sensebe L, 2013, STEM CELL RES THER, V4, DOI 10.1186/scrt217
· Shimomura K, 2018, AM J SPORT MED, V46, P2384, DOI 10.1177/0363546518781825
· Shimomura K, 2015, CARTILAGE, V6, p13S, DOI 10.1177/1947603515571002
· Shimomura K, 2010, BIOMATERIALS, V31, P8004, DOI 10.1016/j.biomaterials.2010.07.017
· TEGNER Y, 1985, CLIN ORTHOP RELAT R, P43
· TOOLE BP, 1979, P NATL ACAD SCI USA, V76, P6299, DOI 10.1073/pnas.76.12.6299
· Zainal Ariffin S.H., 2012, SCI WORLD J, V2012
dc.description.index MEDLINE
dc.identifier.eissn 1937-3392
hcfmusp.citation.scopus 2
hcfmusp.citation.wos 1
hcfmusp.affiliation.country Brasil
hcfmusp.affiliation.country Estados Unidos
hcfmusp.affiliation.country Japão


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace



Browse

My Account

Statistics