Assessment of oxidative damage and enzymatic antioxidant system activity on the umbilical cord blood and saliva from preterm newborns with risk factors for early-onset neonatal sepsis

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC MEDICA BRASILEIRA
Autores
KANDLER, Ingrid
CIANCIARULLO, Marco Antonio
SANTOS, Natalia Rodrigues dos
Citação
REVISTA DA ASSOCIACAO MEDICA BRASILEIRA, v.64, n.10, p.888-895, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND: To determine the concentration of the Lipid Peroxidation Marker: Malondialdehyde (MDA), and Antioxidant Markers: Superoxide Dismutase (SOD), Glutathione Peroxidase (GPX), Catalase (CAL) in umbilical cord blood and in unstimulated saliva in the first 24 and 48 hours of life in the PTNB of mothers with and without risk factors for early-onset neonatal sepsis. METHODS: Cross-sectional study with the signing of informed consent by the pregnant women and application of a standard questionnaire classifying the PTNB in Group 1 or 2. RESULTS: Twenty-one PTNB were studied. Regarding gender, birth weight, need for oxygen, use of phototherapy, diagnosis of assumed sepsis, presence of fetal distress, number of pregnancies, type of delivery, use of corticosteroids, premature rupture of membranes, maternal fever, chorioamnionitis, APGAR at the 5th and 10th minute of life. Statistical analysis was performed with the Mann-Whitney test (p = 0.019) on the GPX variable of umbilical cord blood in the group of mothers with risk factors for early-onset neonatal sepsis. There was no statistical difference in the MDA, SOD, and CAT variables of the group with risk factors and in any variable of the group without risk factors. CONCLUSION: There was an increase of the GPX concentration in the blood from the umbilical vein in the group with risk factors for early-onset neonatal sepsis. There was no statistical significance in the comparison of saliva and umbilical cord blood. There was no statistically significant difference in MDA, SOD, CAT.
Palavras-chave
Oxidative stress, Infant, Premature, Malondialdehyde, Glutathione peroxidase, Superoxide dismutase
Referências
  1. Aebi H., 1983, METHOD ENZYMAT AN, P276
  2. Ahmed AEA, 2017, J CLIN DIAGN RES, V11, pBC17, DOI 10.7860/JCDR/2017/29085.10310
  3. Asci A, 2015, PEDIATR INT, V57, P1131, DOI 10.1111/ped.12698
  4. Bajcetic M, 2014, SHOCK, V42, P179, DOI 10.1097/SHK.0000000000000198
  5. Bar-Or D, 2015, REDOX BIOL, V4, P340, DOI 10.1016/j.redox.2015.01.006
  6. Barrera Giuseppina, 2012, ISRN Oncol, V2012, P137289, DOI 10.5402/2012/137289
  7. Buonocore G, 2000, PEDIATR RES, V47, P221, DOI 10.1203/00006450-200002000-00012
  8. Cancelier AC, 2009, PEDIATR CRIT CARE ME, V10, P467, DOI 10.1097/PCC.0b013e318198b0e3
  9. Cipierre C, 2013, OXID MED CELL LONGEV, V2013
  10. Dani C, 2014, ANTIOXID REDOX SIGN, V21, P1863, DOI 10.1089/ars.2013.5811
  11. Dede H, 2017, FETAL PEDIATR PATHOL, V36, P232, DOI 10.1080/15513815.2017.1303860
  12. Diaz-Castro J, 2015, OXID MED CELL LONGEV, V2015
  13. El Bana Sawsan Mahmoud, 2016, Electron Physician, V8, P2614, DOI 10.19082/2614
  14. Escobar GJ, 2014, PEDIATRICS, V133, P30, DOI 10.1542/peds.2013-1689
  15. ESTERBAUER H, 1990, METHOD ENZYMOL, V186, P407
  16. Garenne M, 2013, IN J WOMENS HEALTH, V5, P457, DOI 10.2147/IJWH.S45983
  17. Ghany EAGA, 2016, PAEDIATR INT CHILD H, V36, P134, DOI 10.1179/2046905515Y.0000000017
  18. Hartman ME, 2013, PEDIATR CRIT CARE ME, V14, P686, DOI 10.1097/PCC.0b013e3182917fad
  19. Iwase T, 2013, SCI REP-UK, V3, DOI 10.1038/srep03081
  20. Kalyanaraman B, 2013, REDOX BIOL, V1, P244, DOI 10.1016/j.redox.2013.01.014
  21. Lazar R, 2015, REDOX REP, V20, P103, DOI 10.1179/1351000214Y.0000000111
  22. Marseglia L, 2014, OXID MED CELL LONGEV, DOI 10.1155/2014/358375
  23. MILLS GC, 1957, J BIOL CHEM, V229, P189
  24. Molina V, 2017, REDOX REP, V22, P330, DOI 10.1080/13510002.2016.1239866
  25. Moore TA, 2013, J PEDIATR GASTR NUTR, V57, P356, DOI 10.1097/MPG.0b013e3182953093
  26. Mutinati M, 2014, REPROD DOMEST ANIM, V49, P7, DOI 10.1111/rda.12230
  27. Negi R, 2012, J MATERN-FETAL NEO M, V25, P1338, DOI 10.3109/14767058.2011.633672
  28. Nejad RK, 2016, J CLIN DIAGN RES, V10, pBC1, DOI 10.7860/JCDR/2016/16935.7974
  29. PAOLETTI F, 1990, METHOD ENZYMOL, V186, P209
  30. Perrone S, 2017, FRONT PEDIATR, V4, DOI 10.3389/fped.2016.00143
  31. Punchard NA, 1996, FREE RADICALS PRACTI, P227
  32. Santos C, 2017, BRIT J NUTR, V117, P1304, DOI 10.1017/S0007114517001155
  33. Saugstad OD, 2014, OXID STRESS APPL BAS, P3, DOI 10.1007/978-1-4939-0679-6_1
  34. Saugstad OD, 2012, NEONATOLOGY, V101, P315, DOI 10.1159/000337345
  35. Soumitra Chakravarty, 2012, Current Pediatric Research, V16, P167
  36. Torres-Cuevas I, 2017, REDOX BIOL, V12, P674, DOI 10.1016/j.redox.2017.03.011
  37. Torres-Cuevas I, 2016, FRONT PEDIATR, V4, DOI 10.3389/fped.2016.00029
  38. Vento M, 2014, PERINATAL PRENATAL D, P213
  39. Yuksel S, 2015, TURK J MED SCI, V45, P454, DOI 10.3906/sag-1311-72
  40. Zelko IN, 2002, FREE RADICAL BIO MED, V33, P337, DOI 10.1016/S0891-5849(02)00905-X